Advertisement

Virus-Induced Autoimmune Reactions in the CNS

  • P. J. Talbot
  • D. Arnold
  • J. P. Antel
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 253)

Abstract

Neurologic diseases are diverse and often not well-understood, despite the tremendous health care problems they pose, such as the estimated 22 million persons worldwide who suffer from dementia, a characteristic loss of mental capacities. Virus infections are an established contributor to development of an array of diseases of the central nervous system (CNS) and are implicated in a further spectrum of disorders in which the etiology is not yet formally established. For example, 60% of acquired immune deficiency syndrome (AIDS) patients suffer neurologic sequelae presumably caused by human immunodeficiency virus (HIV). Viruses can contribute to the development of neurologic disease via an array of direct and indirect mechanisms, as summarized in Table 1 and described in detail in this chapter.

Keywords

Multiple Sclerosis Multiple Sclerosis Patient Myelin Basic Protein Acquire Immune Deficiency Syndrome Molecular Mimicry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allegretta M, Nicklas JA, Sriram S, Albertini RJ (1990) T-cells responsive to myelin basic protein in patients with multiple sclerosis. Science 247: 718–721PubMedCrossRefGoogle Scholar
  2. Antel J, Becher B (1998) Central nervous system-immune interactions: contribution to neurologic disease and recovery. In: Antel J, Birnbaum G, Hartung H-P (eds) Clinical neuroimmunology. Blackwell Science pp 26–39Google Scholar
  3. Arbour N, Day R, Newcombe J, Talbot PJ (2000) Neuroinvasion by human respiratory coronaviruses. J Viro! 74: 8913–8971Google Scholar
  4. Arbour N, Côté G, Lachance C, Tardieu M, Cashman NR, Talbot PJ (1999a) Acute and persistent infection of human neural cell lines by human coronavirus 0C43. J Virol 73: 3338–3350PubMedGoogle Scholar
  5. Arbour N, Ekandé S, Côté G, Lachance C, Chagnon F, Cashman NR, Talbot PJ (1999b) Persistent infection of human oligodendrocytic and neuronal cell lines by human coronavirus 229E. J Virol 73: 3326–3337PubMedGoogle Scholar
  6. Arbour N, Talbot PJ (1998) Persistent infection of neural cell lines by human coronaviruses. Adv Exp Med Biol 440: 575–581PubMedCrossRefGoogle Scholar
  7. Arpin N, Talbot PJ (1990) Molecular characterization of the 229E strain of human coronavirus. Adv Exp Med Biol 276: 73–80PubMedCrossRefGoogle Scholar
  8. Baig S, Olsson T, Yuping J, Hojeberg B, Cruz M, Link H (1991) Multiple sclerosis — cells secreting antibodies against myelin-associated glycoprotein are present in cerebrospinal fluid. Scand J Immunol 33: 73–79PubMedCrossRefGoogle Scholar
  9. Bailey OT, Pappenheimer AM, Cheever FS, Daniels JB (1949) A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin. II. Pathology. J Exp Med 90: 195–212Google Scholar
  10. Bang FB, Warwick A (1960) Mouse macrophages as host cells for the mouse hepatitis virus and the genetic basis of their susceptibility. Proc Natl Acad Sci USA 46: 1065–1075PubMedCrossRefGoogle Scholar
  11. Barac-Latas V, Suchanek G, Breitschopf H, Stuehler A, Wege H, Lassmann H (1997) Patterns of oligodendrocyte pathology in coronavirus-induced subacute demyelinating encephalomyelitis in the Lewis rat. Glia 19: 1–12PubMedCrossRefGoogle Scholar
  12. Barger SW, Harmon AD (1997) Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature 388: 878–881CrossRefGoogle Scholar
  13. Barnett EM, Perlman S (1993) The olfactory nerve and not the trigeminal nerve is the major site of CNS entry for mouse hepatitis virus strain JHM. Virology 194: 185–191PubMedCrossRefGoogle Scholar
  14. Benveniste EN (1997) Role of macrophages microglia in multiple sclerosis and experimental allergic encephalomyelitis. J Mol Med 75: 165–173PubMedCrossRefGoogle Scholar
  15. Bhardwaj V, Kumar V, Geysen HM, Sercarz EE (1993) Degenerate recognition of a dissimilar antigenic peptide by myelin basic protein-reactive T cells. J Immunol 151: 5000–5010PubMedGoogle Scholar
  16. Bilzer T, Stitz L (1996) Immunopathogenesis of virus diseases affecting the central nervous system. Crit Rev Immunol 16: 145–222PubMedCrossRefGoogle Scholar
  17. Bonavia A, Arbour N, Wee Yong V, Talbot PJ (1997) Infection of primary cultures of human neural cells by human coronaviruses 229E and 0C43. J Virol 71: 800–806PubMedGoogle Scholar
  18. Boucher A, Mercier G, Duquette P, Talbot PJ (1998) Clonal T cell cross-reactivity between myelin antigens MBP and PLP and human respiratory coronavirus in multiple sclerosis. J Neuroimmunol 90: 33 (abstract)Google Scholar
  19. Bray PF, Luka J, Bray PF, Culp KW, Schlight JP (1992) Antibodies against Epstein-Barr nuclear antigen ( EBNA) in multiple sclerosis CSF and two pentapeptide sequence identities between EBNA and myelin basic protein. Neurology 42: 1798–1804Google Scholar
  20. Brocke S, Gijbels K, Allegretta M, Ferber I, Piercy C, Blankenstein T, Martin R, Utz U, Karin N, Mitchell D, Veromaa T, Waisman A, Gaur A, Conlon P, Ling N, Fairchild PJ, Wraith DC, Ogarra A, Fathman CG, Steinman L (1996) Treatment of experimental encephalomyelitis with a peptide analogue of myelin basic protein. Nature 379: 343–346PubMedCrossRefGoogle Scholar
  21. Brown DR, Kretzschmar HA (1997) Microglia and prion disease: a review. Histol Histopathol 12: 883–892PubMedGoogle Scholar
  22. Buchmeier MJ, Lewicki HA, Talbot PJ, Knobler RL (1984) Murine hepatitis virus-4 (strain JHM) —induced neurologic disease is modulated in vivo by monoclonal antibody. Virology 132: 261–270PubMedCrossRefGoogle Scholar
  23. Burks JS, DeVald BL, Jankovsky LD, Gerdes JC (1980) Two coronaviruses isolated from central nervous system tissue of two multiple sclerosis patients. Science 209: 933–934PubMedCrossRefGoogle Scholar
  24. Burns J, Littlefield K, Gomez C, Kumar V (1991) Assessment of antigenic determinants for the human T-cell response against myelin basic protein using overlapping synthetic peptides. J Neuroimmunol 31: 105–113PubMedCrossRefGoogle Scholar
  25. Cabirac GF, Murray RS, McLaughlin LB, Skolnick DM, Hogue B, Dorovini-Zis K, Didier PJ (1995) In vitro interaction of coronaviruses with primate and human brain microvascular endothelial cells. Adv Exp Med Biol 380: 79–88PubMedCrossRefGoogle Scholar
  26. Cabirac GF, Soike KF, Zhang JY, Hoel K, Butunoi C, Cai GY, Johnson S, Murray RS (1994) Entry of coronavirus into primate CNS following peripheral infection. Microbial Path 16: 349–357CrossRefGoogle Scholar
  27. Chaloner-Larsson G, Johnson-Lussenburg CM (1981) Establishment and maintenance of a persistent infection of L132 cells by human coronavirus 229E. Arch Virol 69: 117–129PubMedCrossRefGoogle Scholar
  28. Chao CC, Hu SX, Peterson PK (1996) Glia: the not so innocent bystanders. J Neurovirol 2: 234–239PubMedCrossRefGoogle Scholar
  29. Cheever FS, Daniels JB, Pappenheimer AM, Bailey OT (1949) A murine virus (JHM) causing dissemi-nated encephalomyelitis with extensive destruction of myelin. I. Isolation and biological properties of the virus. J Exp Med 90: 181–194Google Scholar
  30. Chen YH, Inobe J, Marks R, Gonnella P, Kuchroo VK, Weiner HL (1995a) Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 376: 177–180PubMedCrossRefGoogle Scholar
  31. Chen DS, Asanaka M, Yokomori K, Wang FI, Hwang SB, Li HP, Lai MMC (1995b) A pregnancy-specific glycoprotein is expressed in the brain and serves as a receptor for mouse hepatitis virus. Proc Natl Acad Sci USA 92: 12095–12099PubMedCrossRefGoogle Scholar
  32. Chou YK, Bourdette DN, Offner H, Whitham R, Wang RY, Hashim GA, Vandenbark AA (1992) Frequency of T cells specific for myelin basic protein and myelin proteolipid protein in blood and cerebrospinal fluid in multiple sclerosis. J Neuroimmunol 38: 105–113PubMedCrossRefGoogle Scholar
  33. Chou YK, Jones RE, Bourdette D, Whitham R, Hashim G, Atherton J, Offner H, Vandenbark AA (1994) Human myelin basic protein ( MBP) epitopes recognized by mouse MBP-selected T cell lines from multiple sclerosis patients. J Neuroimmunol 49: 45–50Google Scholar
  34. Collins AR, Sorensen O (1986) Regulation of viral persistence in human glioblastoma and rhabdomyosarcoma cells infected with coronavirus 0C43. Microbial Path 1: 573–582CrossRefGoogle Scholar
  35. Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, Gallo RC, Major EO (1998) Induction of monocyte chemoattractant proteon-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci USA 95: 3117–3121PubMedCrossRefGoogle Scholar
  36. Cook SD, Rohowskykochan C, Bansil S, Dowling PC (1995) Evidence for multiple sclerosis as an infectious disease. Acta Neurol Scand 91: 34–42CrossRefGoogle Scholar
  37. Correale J, McMillan M, McCarthy K, Le T, Weiner LP (1995) Isolation and characterization of autoreactive proteolipid protein-peptide specific T-cell clones from multiple sclerosis patients. Neurology 45: 1370–1378PubMedCrossRefGoogle Scholar
  38. Cosby SL, McQuaid S, Taylor MJ, Bailey M, Rima BK, Martin SJ, Allen IV (1989) Examination of 8 cases of multiple sclerosis and 56 neurological and non-neurological controls for genomic sequences of measles virus, canine distemper virus, simian virus-5 and rubella virus. J Gen Virol 70: 2027–2036PubMedCrossRefGoogle Scholar
  39. Coyle PK (1996) The neuroimmunology of multiple sclerosis. Adv Neuroimmunol 6: 143–154PubMedCrossRefGoogle Scholar
  40. Cross AH, McCarron R, McFarlin DE, Raine CS (1987) Adoptively transferred acute and chronic relapsing autoimmune encephalomyelitis in the PL J mouse and observations on altered pathology by intercurrent virus infection. Lab Invest 57: 499–512Google Scholar
  41. Dalziel RG, Lampert PW, Talbot PJ, Buchmeier MJ (1986) Site-specific alteration of murine hepatitis virus type 4 peplomer glycoprotein E2 results in reduced neurovirulence. J Virol 59: 463–471PubMedGoogle Scholar
  42. David S, Bouchard C, Tsatas O, Giftochristos N (1990) Macrophages can modify the nonpermissive nature of the adult mammalian central nervous system. Neuron 5: 463–469PubMedCrossRefGoogle Scholar
  43. Dekaban GA, Rice GPA (1990) Retroviruses and multiple sclerosis. 2. Failure of gene amplification techniques to detect viral sequences unique to the disease. Neurology 40: 1254–1258Google Scholar
  44. Derosbo NK, Milo R, Lees MB, Burger D, Bernard CCA, Ben-Nun A (1993) Reactivity to myelin antigens in multiple sclerosis — Peripheral blood lymphocytes respond predominantly to myelin oligodendrocyte glycoprotein. J Clin Invest 92: 2602–2608CrossRefGoogle Scholar
  45. De Stefano N, Matthews PM, Antel JP, Preul M, Francis G, Arnold DL (1995) Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 38: 901–909PubMedCrossRefGoogle Scholar
  46. De Stefano N, Matthews PM, Fu L, Narayanan S, Stanley J, Francis GS, Antel JP, Arnold DL (1998) Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121: 1469–1477Google Scholar
  47. Dhibjalbut S, Hoffman PM, Yamabe T, Sun D, Xia J, Eisenberg H, Bergey G, Ruscetti FW (1994) Extracellular human T-cell lymphotropic virus type 1 tax protein induces cytokine production in adult human microglial cells. Ann Neurol 36: 787–790CrossRefGoogle Scholar
  48. Diehl HJ, Scharch M, Budzinski RM, Stoffel W (1986) Individual exons encode the integral membrane domains of human myelin proteolipid protein. Proc Natl Acad Sci USA 83: 9807–9811PubMedCrossRefGoogle Scholar
  49. Edwards J, Denis F, Talbot PJ (2000) Activation of glial cells by human coronavirus 0C43. J Neuro-immunol 108: 73–81Google Scholar
  50. Erlich SS, Fleming JO, Stohlman SA (1987) Experimental neuropathology of chronic demyelination by a JHM virus variant. Arch Neurol 44: 839–842PubMedCrossRefGoogle Scholar
  51. Fleming JO, El Zaatari AK, Gilmore W, Berne JD, Burks JS, Stohlman SA, Tourtelotte WW, Weiner LP (1988) Antigenic assessment of coronaviruses isolated from patients with multiple sclerosis. Arch Neurol 45: 629–633PubMedCrossRefGoogle Scholar
  52. Fleming JO, Trousdale MD, El-Zaatari F, Stohlman SA, Weiner LP (1986) Pathogenicity of antigenic variants of murine coronavirus JHM selected with monoclonal antibodies. J Virol 58: 869–875PubMedGoogle Scholar
  53. Fritz RB, Mc Farlin DE (1989) Encephalitogenic epitopes of myelin basic protein. In: Sercarz E (ed) Antigenic determinants and immune regulation them immunol. Karger, Basel pp 101–125CrossRefGoogle Scholar
  54. Fu L, Matthews PM, De Stefano N, Worseley KJ, Narayanan S, Francis GS, Antel JP, Wolfson C, Arnold DL (1998) Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain 121: 103–113PubMedCrossRefGoogle Scholar
  55. Fujinami RS, Oldstone MBA (1985) Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 230: 1043–1045PubMedCrossRefGoogle Scholar
  56. Garza KM, Tung KSK (1995) Frequency of molecular mimicry among T cell peptides as the basis for autoimmune disease and autoantibody induction. J Immunol 155: 5444–5448PubMedGoogle Scholar
  57. Gautam AM, Pearson CI, Smilek DE, Steinman L, McDevitt HO (1992) A polyalanine peptide with only 5 native myelin basic protein residues induces autoimmune encephalomyelitis. J Exp Med 176: 605–609PubMedCrossRefGoogle Scholar
  58. Gilmore W, Correale J, Weiner LP (1994) Coronavirus induction of class I major histocompatibility complex expression in murine astrocytes is virus strain specific. J Exp Med 180: 1013–1023PubMedCrossRefGoogle Scholar
  59. Goswami KKA, Randall RE, Lange LS, Russell WC (1987) Antibodies against the paramyxovirus SV5 in the cerebrospinal fluids of some multiple sclerosis patients. Nature 327: 244–247PubMedCrossRefGoogle Scholar
  60. Gravel C, Kay DG, Jolicoeur P (1993) Identification of the infected target cell type in spongiform myeloencephalopathy induced by the neurotropic Cas-Br-E murine leukemia virus. J Virol 67: 6648–6658.PubMedGoogle Scholar
  61. Greer JM, Sobel RA, Sette A, Southwood S, Lees MB, Kuchroo VK (1996) Immunogenic and encephalitogenic epitope clusters of myelin proteolipid protein. J Immunol 156: 371–379PubMedGoogle Scholar
  62. Grzybicki DM, Kwack KB, Perlman S, Murphy SP (1997) Nitric oxide synthase type II expression by different cell types in MHV-JHM encephalitis suggests distinct roles for nitric oxide in acute versus persistent virus infection. J Neuroimmunol 73: 15–27PubMedCrossRefGoogle Scholar
  63. Haase AT, Ventura P, Gibbs CJ, Tourtelotte WW (1981) Measles virus nucleotide sequences: detection by hybridization in situ. Science 212: 672–674PubMedCrossRefGoogle Scholar
  64. Hamre D, Procknow JJ (1966) A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med 121: 190–193PubMedGoogle Scholar
  65. Hashim G (1978) Myelin basic protein: structure, function and antigenic determinants. Immunol Rev 39: 60–107PubMedCrossRefGoogle Scholar
  66. Hashim G, Vandenbark AA, Gold DP, Diamanduros T, Offner H (1991) T-cell lines specific for an immunodominant epitope of human basic protein define an encephalitogenic determinant for experimental autoimmune encephalomyelitis-resistant LOU M rats. J Immunol 146: 515–520PubMedGoogle Scholar
  67. Haspel MV, Lampert PW, Oldstone MBA (1978) Temperature-sensitive mutants of mouse hepatitis virus produce a high incidence of demyelination. Proc Natl Acad Sci USA 75: 4033–4036PubMedCrossRefGoogle Scholar
  68. Hohlfeld R, Meinl E, Weber F, Zipp F, Schmidt S, Sotgiu S, Goebels N, Voltz R, Spuler S, Iglesias A, Wekerle H (1995) The role of autoimmune T lymphocytes in the pathogenesis of multiple sclerosis. Neurology 45:S33 -S38Google Scholar
  69. Horwitz MS, Bradley LM, Harbertson J, Krahl T, Lee J, Sarvetnick N (1998) Diabetes induced byGoogle Scholar
  70. Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nature Med 4:781–785 Houtman JJ, Fleming JO (1996) Pathogenesis of mouse hepatitis virus-induced demyelination.Google Scholar
  71. Houtman JJ, Fleming JO (1996) Dissociation of demyelination and viral clearance in congenitally immunodelicient mice infected with murine coronavirus JHM. J Neurovirol 2: 101–110PubMedCrossRefGoogle Scholar
  72. Hovanec DL, Flanagan TD (1983) Detection of antibodies to human coronaviruses 229E and 0C43 in the sera of multiple sclerosis patients and normal subjects. Infect Immun 41: 426–429PubMedGoogle Scholar
  73. Jahnke U, Fischer EH, Alvord EC (1985) Sequence homology between certain viral proteins and proteins related to encephalomyelitis and neuritis. Science 229: 282–284PubMedCrossRefGoogle Scholar
  74. Jingwu Z, Chou CHJ, Hashim G, Medaer R, Raus JCM (1990) Preferential peptide specificity and HLA restriction of myelin basic protein-specific T-cell clones derived from MS patients. Cell Immunol 129: 189–198CrossRefGoogle Scholar
  75. Johnson RT (1985) Viral aspects of multiple sclerosis In: Koetsier JC (ed) Handbook of Clinical Neurology Demyelinating Diseases. Elsevier, Amsterdam pp 319–336Google Scholar
  76. Johnson-Lussenhurg CM, Zheng Q (1987) Coronavirus and multiple sclerosis: results of a case control longitudinal serological study. Adv Exp Med Biol 218: 421–429CrossRefGoogle Scholar
  77. Kersh GJ, Allen PM (1996) Essential flexibility in the T-cell recognition of antigen. Nature 380: 495–498PubMedCrossRefGoogle Scholar
  78. Kinnunen E, Valle M, Piirainen L, Kleemola M, Kantanen ML, Juntunen J, Klockars M, Koskenvuo M (1990) Viral antibodies in multiple sclerosis — a nationwide co-twin study. Arch Neurol 47: 743–746PubMedCrossRefGoogle Scholar
  79. Knobler RL, Haspel MV, Oldstone MBA (1981) Mouse hepatitis virus type 4 (JHM strain) — induced fatal central nervous system disease. 1. Genetic control and the murine neuron as the susceptible site of disease. J Exp Med 153: 32–843Google Scholar
  80. Knobler RL, Lampert PW, Oldstone MBA (1982) Virus persistence and recurring demyelination produced by a temperature-sensitive mutant of MHV-4. Nature 298: 289–281CrossRefGoogle Scholar
  81. Kolson DL, Lavi E, Gonzalez-Scarano F (1998) The effects of human immunodeficiency virus in the central nervous system. Adv Virus Res 50: 1–47PubMedCrossRefGoogle Scholar
  82. Kurtzke JF (1993) Epidemiologic evidence for multiple sclerosis as an infection. Clin Microbiol Rev 6: 382–427PubMedGoogle Scholar
  83. Kyuwa S, Yamaguchi K, Toyoda Y, Fujiwara K (1991) Induction of self-reactive T-cells after murine coronavirus infection. J Virol 65: 1789–1795PubMedGoogle Scholar
  84. Labonté P, Mounir S, Talbot PJ (1995) Sequence and expression of the ns2 protein gene of human coronavirus 0C43. J Gen Virol 76: 431–435PubMedCrossRefGoogle Scholar
  85. Lachance C, Arbour N, Cashman NR, Talbot PJ (1998) Involvement of aminopeptidase N (CD13) in infection of human neural cells by human coronavirus 229E. J Virol 72: 6511–6519Google Scholar
  86. Lamontagne L, Descôteaux JP, Jolicoeur P (1989) Mouse hepatitis virus 3 replication in T and B lymphocytes correlate with viral pathogenicity. J Immunol 142: 4458–4465PubMedGoogle Scholar
  87. Lampert PW, Sims JK, Kniazeff AJ (1973) Mechanism of demyelination in JHM virus encephalomyelitis. Acta Neuropathol 24: 76–85PubMedCrossRefGoogle Scholar
  88. Lavi E, Fishman PS, Highkin MK, Weiss SR (1988) Limbic encephalitis after inhalation of a murine coronavirus. Lab Invest 58: 31–36PubMedGoogle Scholar
  89. Lehmann PV, Forsthuber T, Miller A, Sercarz EE (1992) Spreading of T cell autoimmunity to cryptic determinants of an autoantigen. Nature 358: 155–157PubMedCrossRefGoogle Scholar
  90. Lennon VA, Wilks AV, Carnegie PR (1970) Immunologic properties of the main encephalitogenic peptide from the basic protein of human myelin. J Immunol 105: 1223–1230PubMedGoogle Scholar
  91. Liblau R, Tournierlasserve E, Maciazek J, Dumas G, Siffert O, Hashim G, Bach MA (1991) T-cell response to myelin basic protein epitopes in multiple sclerosis patients and healthy subjects. Eur J Immunol 21: 1391–1395PubMedCrossRefGoogle Scholar
  92. Linington C, Gunn CA, Lassmann H (1990) Identification of an encephalitogenic determinant of myelin proteolipid protein for the rabbit. J Neuroimmunol 30: 135–144PubMedCrossRefGoogle Scholar
  93. Liquori AM (1991) Myelin basic protein (MBP) displays significant homologies with GAG core proteins of HTLV retroviruses. J Theor Biol 148: 279–281PubMedCrossRefGoogle Scholar
  94. Lodge PA, Johnson C, Sriram S (1996) Frequency of MBP and MBP peptide-reactive T cells in the HPRT mutant T-cell population of MS patients. Neurology 46: 1410–1415PubMedCrossRefGoogle Scholar
  95. Ludwin SK (1997) The pathobiology of the oligodendrocyte. J Neuropathol Exp Neurol 56: 111–124PubMedCrossRefGoogle Scholar
  96. Markovicplese S, Fukaura H, Zhang JW, Alsabbagh A, Southwood S, Sette A, Kuchroo VK, Hafler DA (1995) T cell recognition of immunodominant and cryptic proteolipid protein epitopes in humans.J Immunol 155: 982–992Google Scholar
  97. Massa PT, Dörries R, ter Meulen V (1986) Viral particles induce la antigen expression on astrocytes. Nature 320: 543–546PubMedCrossRefGoogle Scholar
  98. Matthews PM, De Stefano N, Narayanan S, Francis GS, Wolinsky JS, Antel JP, Arnold DL (1998) Putting MRS studies in context: axonal damage and disability in multiple sclerosis. Semin Neurol 18: 327–336PubMedCrossRefGoogle Scholar
  99. McIntosh K, Becker WB, Chanock RM (1967) Growth in suckling mouse brain of “IBV-like” viruses from patients with upper respiratory tract disease. Proc Natl Acad Sci USA 58: 2268–2273PubMedCrossRefGoogle Scholar
  100. McRae BL, Vanderlugt CL, DalCanto MC, Miller SD (1995) Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J Exp Med 182: 75–85PubMedCrossRefGoogle Scholar
  101. Meinl E, Weber F, Drexler K, Morelle C, Ott M, Saruhandireskeneli G, Goebels N, Ertl B, Jechart G, Giegerich G, Schonbeck S, Bannwarth W, Wekerle H, Hohlfeld R (1993) Myelin basic protein specific T lymphocyte repertoire in multiple sclerosis — complexity of the response and dominance of nested epitopes due to recruitment of multiple T cell clones. J Clin Invest 92: 2633 2643Google Scholar
  102. Mikol DD, Gulcher JR, Stefansson K (1990) The oligodendrocyte-myelin glycoprotein belongs to a distinct family of proteins and contains the FINK-1 carbohydrate. J Cell Biol 110: 471–479PubMedCrossRefGoogle Scholar
  103. Mikoshiba K, Okano H, Tamura T, lkenaka K (1991) Structure and function of myelin protein genes. Annu Rev Neurosci 14: 201–217PubMedCrossRefGoogle Scholar
  104. Miller SD, Mcrae BL, Vanderlugt CL, Nikcevich KM, Pope JG, Pope L, Karpus WJ (1995) Evolution of the T-cell repertoire during the course of experimental immune-mediated demyelinating diseases. Immunol Rev 144: 225–244PubMedCrossRefGoogle Scholar
  105. Miller SD, Vanderlugt CL, Begolka WS, Pao W, Yauch RL, Neville KL, Katz-Levy Y, Carrizosa A, Kim BS (1997) Persistent infection with Theiler’s virus leads to CNS autoimmunity via epitope spreading. Nature Med 3: 1133–1136PubMedCrossRefGoogle Scholar
  106. Moumdjian RA, Antel JP, Yong VW (1991) Origin of contralateral reactive gliosis in surgically injured rat cerebral cortex. Brain Res 547: 223–228PubMedCrossRefGoogle Scholar
  107. Mounir S, Talbot PJ (1992) Sequence analysis of the membrane protein gene of human coronavirus 0C43 and evidence for 0-glycosylation. J Gen Virol 73: 2731–2736PubMedCrossRefGoogle Scholar
  108. Mounir S, Talbot PJ (1993a) Molecular characterization of the S protein gene of human coronavirus OC43. J Gen Virol 74: 1981–1987PubMedCrossRefGoogle Scholar
  109. Mounir S, Talbot PJ (1993b) Human coronavirus 0C43 RNA 4 lacks 2 open reading frames located downstream of the S gene of bovine coronavirus. Virology 192: 355–360PubMedCrossRefGoogle Scholar
  110. Mounir S, Labonté P, Talbot PJ (1994) Characterization of the nonstructural and spike proteins of the human respiratory coronavirus 0C43: comparison with bovint enteric coronavirus. Coronaviruses and their diseases. Adv Exp Biol Med 342: 61–68Google Scholar
  111. Murray RS, Brown B, Brian D, Cabirac GF (1992a) Detection of coronavirus RNA antigen in multiple sclerosis brain. Ann Neurol 31: 525–533PubMedCrossRefGoogle Scholar
  112. Murray RS, Cai GY, Hoel K, Zhang JY, Soike KF, Cabirac GF (1992b) Coronavirus infects and causes demyelination in primate central nervous system. Virology 188: 274–284PubMedCrossRefGoogle Scholar
  113. Murray RS, Cai GY, Soike KF, Cabirac GF (1997) Further observations on coronavirus infection of primate CNS. J Neurovirol 3: 71–75PubMedCrossRefGoogle Scholar
  114. Myint SH (1994) Human coronaviruses — a brief review. Rev Med Virol 4: 35–46CrossRefGoogle Scholar
  115. Oldstone MB, Sinha YN, Blount P, Tishon A, Rodriguez M, von Wedel R, Lampert PW (1982) Virus-induced alterations in homeostasis: alteration in differentiated functions of infected cells in vivo. Science 218: 1125–1127PubMedCrossRefGoogle Scholar
  116. Oldstone MBA (1987) Molecular mimicry and autoimmune disease. Cell 50: 819–820PubMedCrossRefGoogle Scholar
  117. Oldstone MBA (1998) Molecular mimicry and immune-mediated diseases. FASEB J 12: 1255–1265.Google Scholar
  118. Ota K, Matsui M, Milford EL, Mackin GA, Weiner HL, Hafler DA (1990) T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346: 183–187PubMedCrossRefGoogle Scholar
  119. Panitch HS (1994) Influence of infection on exacerbations of multiple sclerosis. Ann Neurol 36: S25 - S28PubMedCrossRefGoogle Scholar
  120. Pasick JMM, Dales S (1991) Infection by coronavirus JHM of rat neurons and oligodendrocyte-type-2 astrocyte lineage cells during distinct developmental stages. J Virol 65: 5013–5028PubMedGoogle Scholar
  121. Pearson J, Mims CA (1985) Differential susceptibility of cultured neural cells to the human coronavirus 0C43. J Virol 53: 1016–1019PubMedGoogle Scholar
  122. Perlman S, Ries D (1987) The astrocyte is a target cell in mice persistently infected with mouse hepatitis virus strain JHM. Microbial Path 3: 309–314CrossRefGoogle Scholar
  123. Perron H, Garson JA, Bedin F, Beseme F, Paranhos-Baccala G, Komurian-Pradel F, Mallet F, Tuke PW, Voisset C, Blond JL, Lalande B, Seigneurin JM, Mandrand B (1997) Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. Proc Natl Acad Sci USA 94: 7583–7588PubMedCrossRefGoogle Scholar
  124. Pette M, Fujita K, Wilkinson D, Altmann DM, Trowsdale J, Giegerich G, Hinkkanen A, Epplen JT, Kappos L, Wekerle H (1990) Myelin autoreactivity in multiple sclerosis — recognition of myelin basic protein in the context of HLA-DR2 products by lymphocytes-T of multiple-sclerosis patients and healthy donors. Proc Natl Acad Sci USA 87: 7968–7972PubMedCrossRefGoogle Scholar
  125. Pewe L, Wu GF, Barnett EM, Castro RF, Perlman S (1996) Cytotoxic T cell-resistant variants are selected in a virus-induced demyelinating disease. Immunity 5: 253–262PubMedCrossRefGoogle Scholar
  126. Pham-Dinh D, Mattei MG, Nussbaum JL, Roussel G, Pontarotti P, Roeckel N, Mather IH, Artzt K, Lindahl KF, Dautigny A (1993) Myelin oligodendrocyte glycoprotein is a member of a subset of the immunoglobulin superfamily encoded within the major histocompatibility complex. Proc Natl Acad Sci USA 90: 7990–7994PubMedCrossRefGoogle Scholar
  127. Prat A, Weinrib L, Becher B, Duquette P, Couture R, Antel J (1998) Expression of brabykinin B1 receptor on lymphocytes from MS patients. Neurology 50: A151Google Scholar
  128. Qin Y, Duquette P, Zhang Y, Talbot PJ, Poole R, Antel J (1998) Clonal expansion and somatic hypermutation of VH genes of B cells from cerebrospinal fluid in multiple sclerosis. J Clin Invest 102: 1045–1050PubMedCrossRefGoogle Scholar
  129. Quaratino S, Thorpe CJ, Travers PJ, Londei M (1995) Similar antigenic surfaces, rather than sequence homology, dictate T-cell epitope molecular mimicry. Proc Natl Acad Sci USA 92: 10398–10402PubMedCrossRefGoogle Scholar
  130. Reddy EP, Sandberg-Wollheim M, Mettus RV, Ray PE, DeFreitas E, Koprowski H (1989) Amplification and molecular cloning of HTLV-1 sequences from DNA of multiple sclerosis patients. Science 243: 529–533PubMedCrossRefGoogle Scholar
  131. Richter W, Mertens T, Schoel B, Muir P, Ritzkowsky A, Scherbaum WA, Boehm BO (1994) Sequence homology of the diabetes-associated autoantigen glutamate decarboxylase with coxsackie B4–2C protein and heat shock protein 60 mediates no molecular mimicry of autoantibodies. J Exp Med 180: 721–726PubMedCrossRefGoogle Scholar
  132. Rivera-Quinones C, McGavern D, Schmelzer JD, Hunter SF, Low PA, Rodriguez M (1998) Absence of neurological deficits following extensive demyelination in a class I-deficient murine model of multiple sclerosis. Nature Med 4: 187–193PubMedCrossRefGoogle Scholar
  133. Rootbernstein RS (1995) Preliminary evidence for idiotype antiidiotype immune complexes cross-reactive with lymphocyte antigens in AIDS and lupus. Med Hypoth 44: 20–27CrossRefGoogle Scholar
  134. Sadovnick AD, Dyment D, Ebers GC (1997) Genetic epidemiology of multiple sclerosis. Epidemiol Rev 19: 99 106Google Scholar
  135. Salmi A, Reunanen M, Bonet) J (1981) Possible viral etiology of multiple sclerosis. In: Katsuki S, Tsubaki T, Toyokura Y (eds) International Congress Series Neurology. Excerpta Medica, Amsterdam pp 416–431Google Scholar
  136. Salmi A, Ziola B, Hovi T, Reunanen M (1982) Antibodies to coronaviruses 0C43 and 229E in multiple sclerosis patients. Neurology 32: 292–295PubMedCrossRefGoogle Scholar
  137. Salvetti M, Ristori G, Damato M, Buttinelli C, Falcone M, Fieschi C, Wekerle H, Pozzilli, C (1993) Predominant and stable T cell responses to regions of myelin basic protein can be detected in individual patients with multiple sclerosis. Eur J Immunol 23: 1232–1239PubMedCrossRefGoogle Scholar
  138. Sato S, Fujita N, Kurihara T, Kuwano R, Sakimura K, Takahashi Y, Miyatake T (1989) eDNA cloning and amino acid sequence for human myelin-associated glycoprotein. Biochem Biophys Res Comm 163: 1473–1480Google Scholar
  139. Schluesener Hi, Sobel RA, Linington C, Weiner HL (1987) A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease. J Immunol 139: 4016–4021Google Scholar
  140. Selin LK, Nahill SR, Welsh RM (1994) Cross-reactivities in memory cytotoxic T lymphocyte recognition of heterologous viruses. J Exp Med 179: 1933–1943PubMedCrossRefGoogle Scholar
  141. Sharpless NE, Obrien WA, Verdin E, Kufta CV, Chen ISY, Dubois-Dalcq M (1992) Human immunodeficiency virus type-1 tropism for brain microglial cells is determined by a region of the env glycoprotein that also controls macrophage tropism. J Virol 66: 2588–2593PubMedGoogle Scholar
  142. Shaw SY, Laursen RA, Lees MB (1986) Analogous amino acid sequences in myelin proteolipid and viral proteins. FEBS Lett 207: 266–270PubMedCrossRefGoogle Scholar
  143. Shirazian D, Mokhtarian F, Herzlich BC, Miller AE, Grob D (1993) Presence of cross-reactive antibodies to HTLV-1 and absence of antigens in patients with multiple sclerosis. J Lab Clin Med 122: 252–259PubMedGoogle Scholar
  144. Sibley WA, Bamford CR, Clark K (1985) Clinical viral infections and multiple sclerosis. Lancet 1: 1313–1315PubMedCrossRefGoogle Scholar
  145. Soldan SS, Berti R, Salem N, Seccherio P, Flamand L, Calabresi PA, Brennan MB, Maloni HW, McFarland HF, Lin H-C, Patnaik M, Jacobson S (1997) Association of human herpes virus 6 (HHV-6) with multiple sclerosis: increased IgM response to HHV-6 early antigen and detection of serum HHV-6 DNA. Nature Med 3: 1394–1397PubMedCrossRefGoogle Scholar
  146. Sorensen O, Collins AR, Flintoff W, Ebers G, Dales S (1986) Probing for the human coronavirus 0C43 in multiple sclerosis. Neurology 36: 1604–1606PubMedCrossRefGoogle Scholar
  147. Sriram S, Rodriguez M (1997) Indictment of the microglia as the villain in multiple sclerosis. Neurology 48: 464–470PubMedCrossRefGoogle Scholar
  148. Steinman L (1996) A few autoreactive cells in an autoimmune infiltrate control a vast population of nonspecific cells: a tale of smart bombs and the infantry. Proc Natl Acad Sci USA 93: 2253–2256PubMedCrossRefGoogle Scholar
  149. Steinman L, Oldstone MBA (1997) More mayhem from molecular mimics. Nature Med 3: 1321–1322PubMedCrossRefGoogle Scholar
  150. Steinman L (1996) Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85: 299–302PubMedCrossRefGoogle Scholar
  151. Stewart JN, Mounir S, Talbot PJ (1992) Human coronavirus gene expression in the brains of multiple sclerosis patients. Virology 191: 502–505PubMedCrossRefGoogle Scholar
  152. Stohlman SA, Bergmann CC, van der Veen RC, Hinton DR (1995) Mouse hepatitis virus-specific cytotoxic T lymphocytes protect from lethal infection without eliminating virus from the central nervous system. J Virol 69: 684–694PubMedGoogle Scholar
  153. Stuve O, Dooley NP, Uhm JH, Antel JP, Francis GS, Williams G, Yong VW (1996) Interferon beta- Ib decreases the migration of T lymphocytes in vitro: effects on matrix metalloproteinase-9. Ann Neurol 40: 853–863PubMedCrossRefGoogle Scholar
  154. Sun JP, Olsson T, Wang WZ, Xiao BG, Kostulas V, Fredrikson S, Ekre HP, Link H (1991) Autoreactive T-cell and B-cell responding to myelin proteolipid protein in multiple sclerosis and controls. Eur J Immunol 21: 1461–1468PubMedCrossRefGoogle Scholar
  155. Sun N, Grzybicki D, Castro RF, Murphy S, Perlman S (1995) Activation of astrocytes in the spinal cord of mice chronically infected with a neurotropic coronavirus. Virology 213: 482–493PubMedCrossRefGoogle Scholar
  156. Suzumura A, Lavi E, Weiss SR, Silberberg DH (1986) Coronavirus infection induces H-2 antigen expression on oligodendrocytes and astrocytes. Science 232: 991–993PubMedCrossRefGoogle Scholar
  157. Swanborg RH (1995) Animal models of human disease: experimental autoimmune encephalomyelitis in rodents as a model for human demyelinating disease. Clin Immunol Tmmunopathol 77: 4–13CrossRefGoogle Scholar
  158. Talbot P (1995) Implication of viruses in multiple sclerosis. Med Sci 11: 837–843Google Scholar
  159. Talbot P, Jouvenne P (1992) Neurotropic potential of coronaviruses. Med Sci 8: 119–125Google Scholar
  160. Talbot PJ, Ekandé S, Cashman NR, Mounir S, Stewart JN (1994) Neurotropism of human coronavirus 229E. Adv Exp Med Biol 342: 339–346CrossRefGoogle Scholar
  161. Talbot PJ, Paquette JS, Ciurli C, Antel JP, Ouellet F (1996) Myelin basic protein and human coronavirus 229E cross-reactive T cells in multiple sclerosis. Ann Neurol 39: 233–240PubMedCrossRefGoogle Scholar
  162. Tanaka R, Iwasaki Y, Koprowski HJ (1976) Intracisternal virus-like particles in the brain of a multiple sclerosis patient. J Neurosci Res 28: 121–126Google Scholar
  163. Taupin V, Renno T, Bourbonnière L, Peterson AC, Rodriguez M, Owens T (1997) Increased severity of experimental autoimmune encephalomyelitis, chronic macrophage microglial reactivity, and demyelination in transgenic mice producing tumor necrosis factor-alpha in the central nervous system. Eur J Immunol 27: 905–913PubMedCrossRefGoogle Scholar
  164. Tuohy VK, Thomas DM, Haqqi T, Yu M, Johnson JM (1995) Determinant-regulated onset of experimental autoimmune encephalomyelitis: distinct epitopes of myelin proteolipid protein mediate either acute or delayed disease in SJL J mice. Autoimmunity 21: 203–213CrossRefGoogle Scholar
  165. Tyrrell DAJ, Almeida JD, Berry DM, McIntosh K (1968) Coronaviruses. Nature 220: 650Google Scholar
  166. Tyrrell DAJ, Bynoe ML (1965) Cultivation of a novel type of common-cold virus in organ cultures. Brit Med J 1: 1467–1470PubMedCrossRefGoogle Scholar
  167. Uhm, Joon H, Dooley, Nora P, Stuve O, Francis G, Duquette P, Antel JP, Yong VW (1997) Migratory behaviour of T lymphocytes isolated from MS patients undergoing treatment with 13-interferon (IFN-131b). Neurology 48: A80Google Scholar
  168. Ulvestad E, Williams K, Mork S, Antel J, Nyland H (1994) Phenotypic differences between human monocytes macrophages and microglial cells studied in situ and in vitro. J Neuropathol Exp Neurol 53: 492–501PubMedCrossRefGoogle Scholar
  169. van Noort JM, van Sechel AC, Bajramovic JJ, Elouagmiri M, Polman CH, Lassmann H, Ravid R (1995) The small heat-shock protein alpha B-crystallin as candidate autoantigen in multiple sclerosis. Nature 375: 798–801PubMedCrossRefGoogle Scholar
  170. Vandvik B, Norrby E (1989) Paramyxovirus SV5 and multiple sclerosis. Nature 338: 769–771PubMedCrossRefGoogle Scholar
  171. Wang FI, Stohlman SA, Fleming JO (1990) Demyelination induced by murine hepatitis virus JHM strain (MHV-4) is immunologically mediated. J Neuroimmunol 30: 31–41PubMedCrossRefGoogle Scholar
  172. Warren KG, Catz I, Steinman L (1995) Fine specificity of the antibody response to myelin basic protein in the central nervous system in multiple sclerosis: the minimal B-cell epitope and a model of its features. Proc Natl Acad Sci USA 92: 11061–11065PubMedCrossRefGoogle Scholar
  173. Watanabe R, Wege H, ter Meulen V (1983) Adoptive transfer of EAE-like lesions from rats with coronavirus-induced demyelinating encephalomyelitis. Nature 305: 150–153PubMedCrossRefGoogle Scholar
  174. Wege H (1995) Immunopathological aspects of coronavirus infections. Springer Sem Immunopathol 17: 133–148Google Scholar
  175. Weiner LP (1973) Pathogenesis of demyelination induced by mouse hepatitis virus (JHM virus). Arch Neurol 28: 298–303PubMedCrossRefGoogle Scholar
  176. Weiss SR (1983) Coronaviruses SD and SK share extensive nucleotide homology with murine coronavirus MHV-A59 more than that shared between human murine coronaviruses. Virology 126: 669–677PubMedCrossRefGoogle Scholar
  177. Williams RK, Jiang GS, Holmes KV (1991) Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc Natl Acad Sci USA 88: 5533–5536PubMedCrossRefGoogle Scholar
  178. Wing MC, Moreau T, Greenwood J, Smith RM, Hale G, Isaacs J, Waldmann H, Lachmann PJ, Compston A (1996) Mechanism of first-dose cytokine-release syndrome by CAMPATH 1-H: involvement of CD16 (FcgammaRlll) and CD1la CD18 (LFA-1) on NK cells. J Clin Invest 98: 2819–2826Google Scholar
  179. Woyciechowska JL, Dambrozia J, Leinikki P, Shekarchi C, Wallen W, Sever J, McFarland H, McFarlin D (1985) Viral antibodies in twins with multiple sclerosis. Neurology 35: 1176–1180PubMedCrossRefGoogle Scholar
  180. Wucherpfennig KW, Strominger JL (1995) Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80: 695–705PubMedCrossRefGoogle Scholar
  181. Wucherpfennig KW, Weiner HL, Hafler DA (1991) T-cell recognition of myelin basic protein. Immunol Today 12: 277–282PubMedCrossRefGoogle Scholar
  182. Wucherpfennig KW, Zhang JW, Witek C, Matsui M, Modabber Y, Ota K, Hafler DA (1994) Clonal expansion and persistence of human T cells specific for an immunodominant myelin basic protein peptide. J Immunol 152: 5581–5592PubMedGoogle Scholar
  183. Virus-Induced Autoimmune Reactions in the CNS 271Google Scholar
  184. Yamada M, Zurbriggen A, Fujinami RS (1990) Monoclonal antibody to Theilers murine encephalomyelitis virus defines a determinant on myelin and oligodendrocytes, and augments demyelination in experimental allergic encephalomyelitis. J Exp Med 171: 1893–1907PubMedCrossRefGoogle Scholar
  185. Yokomori K, Asanaka M, Stohlman SA, Lai MMC (1993) A spike protein-dependent cellular factor other than the viral receptor is required for mouse hepatitis virus entry. Virology 196: 45–56PubMedCrossRefGoogle Scholar
  186. Zhang JW, Markovicplese S, Lacet B, Raus J, Weiner HL, Hatter DA (1994) Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med 179: 973–984PubMedCrossRefGoogle Scholar
  187. Zielasek, Hartung HP (1996) Molecular mechanisms of microglial activation. Adv Neuroimmunol 6: 191–222Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • P. J. Talbot
    • 1
  • D. Arnold
    • 2
  • J. P. Antel
    • 2
  1. 1.Centre de recherche en santé humaineINRS-Institut Armand-Frappier 531LavalCanada
  2. 2.Montreal Neurologic InstituteMcGill UniversityMontrealCanada

Personalised recommendations