Advertisement

Covariant Phase-Space Representation for Localized Light Waves

  • Y. S. Kim
  • E. P. Wigner
Chapter
Part of the The Scientific Papers book series (WIGNER, volume A / 3)

Abstract

It is suggested that the light-cone coordinate system is the natural language for the Lorentz-covariant phase-space representation of quantum mechanics. The localized light wave is discussed as an illustrative example. It is shown that the unitary transformation of a localized light wave from one Lorentz frame to another can be achieved through its covariant phase-space representation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400 (1949).ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    A. S. Wightman, Rev. Mod. Phys. 34, 845 (1962); T. O. Philips, Phys. Rev. 136, B893 (1964); W. O. Amrein, Helv. Phys. Acta 42, 149 (1969); S. T. Ali and G. G. Emch, J. Math. Phys. 15, 176 (1974).MathSciNetGoogle Scholar
  3. 3.
    For a recent review article on this subject, see S. T. Ali, Riv. Nuovo Cimento 8, No. 11 (1985).Google Scholar
  4. 4.
    C. K. Hong and L. Mandel, Phys. Rev. Lett. 56, 58 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    D. Han, Y. S. Kim, and M. E. Noz, Phys. Rev. A 35, 1682 (1987).Google Scholar
  6. 6.
    R. P. Feynman, M. Kislinger, and F. Ravndal, Phys. Rev. D 3, 2706 (1971). For a reformulation of the relativistic quark model in terms of the representations of the Poincaré group, see Y. S. Kim and M. E. Noz, Theory and Application of the Poincaré Group ( Reidel, Dordrecht, 1986 ).Google Scholar
  7. 7.
    E. P. Wigner, Phys. Rev. 40, 749 (1932).ADSCrossRefGoogle Scholar
  8. 8.
    For review articles on this subject, see E. P. Wigner, in Perspective in Quantum Theory, edited by W. Yourgrau and A. van der Merwe (MIT Press, Cambridge, Mass., 1971); P. Carruthers and F. Zachariasen, Rev. Mod. Phys. 55, 245 (1983); R. F. O’Connell, Found. Phys. 13, 83 (1983); M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, Phys. Rep. 106, 121 (1984); N. L. Balazs and B. K. Jennings, ibid. 104C, 347 (1984); E. P. Wigner, in Proceedings of the First International Conference on the Physics of Phase Space, edited by Y. S. Kim and W. W. Zachary (Springer-Verlag, Heidelberg, 1987 ); F. J. Narcowich and S. A. Fulling, Seminars in Mathematical Physics (Texas AM University, College Station, Texas, 1986 ), No. 1.Google Scholar
  9. 9.
    L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962); S. Fujita, Introduction to Non-Equilibrium Statistical Mechanics (Saunders, Philadelphia, 1966); K. Imre, E. Ozimir, M. Rosenbaum, and P. F. Zweifel, J. Math. Phys. 8 1097 (1967); R. W. Davies, and K. T. R. Davies, Ann. Phys. (N.Y.) 89, 261 (1975); R. Hakim, Riv. Nuovo Cimento 1, No. 6 (1978); A. Royer, Phys. Rev. A 32, 1729 (1985); J. D. Alonso, Ann. Phys. (N.Y.) 160, 1 (1985).CrossRefGoogle Scholar
  10. 10.
    J. R. Nix, Nucl. Phys. A 130, 241 (1969); N. L. Balazs and G. G. Zippel, Ann. Phys. (N.Y.) 77, 139 (1973); R. A. Remler, Ann. Phys. 95, 455 (1975); Phys. Rev. D 16, 3464 (1977). R. A. Remler and A. P. Sathe, Ann. Phys. (N.Y.) 91, 295 (1975); Phys. Rev. C 18, 2293 (1978); M. Thies, Ann. Phys. (N.Y.) 123, 441 (1979); H. Kuratsuji, Prog. Theor. Phys. 65, 224 (1981); M. Durand, P. Schuck, and J. Kunz, Nucl. Phys. A 439, 263, (1985).Google Scholar
  11. 11.
    P. Carruthers and F. Zachariasen. Durand, ibid. 28, 579 (1983); B. Lesche, ibid. 29, 2270 (1984); H. M. Franca and M. T. Thomas, ibid. 31, 1337 (1985); N. C. Petroni, P. Gueret, J. P. Vigier, and A. Kyprianidis, ibid. 31, 3157 (1985); J. Winter, ibid. 32, 1871 (1985); J. A. Zurek, ibid. 32, 2635 (1985); F. Zachariasen, in Proceedings of the First International Conference on the Physics of Phase Space, edited by Y. S. Kim and W. W. Zachary ( Springer-Verlag, Heidelberg, 1987 ).Google Scholar
  12. 12.
    J. E. Moyal, Proc. Cambridge Philos. Soc. 45, ibid. 45, 545 (1949); L. Cohen, J. Math. Phys. 7, 781 (1966); S. Shlomo and M. Prakash, Nucl. Phys. A 357, 157 (1981); R. F. O’Connell and E. P. Wigner, Phys. Lett. A 83, 145 (1981); 85, 121 (1981); R. F. O’Connell and A. K. Rajagopal, Phys. Rev. Lett. 47, 1029 (1982); 48, 525 (1982); S. Shlomo, J. Phys. A 16, 3463 (1983); P. Bertrand, J. P. Doremus, B. Izrar, V. T. Ngyuen, and M. R. Feix, Phys. Lett. 94A, 415 (1983); R. Werner, J. Math. Phys. 25, 1404 (1984); A. J. E. M. Janssen, ibid. 26, 1986 (1985); T. A. Osborn, ibid. 26, 435 (1985); B. Lesche and T. H. Seligman, J. Phys. A 19, 91 (1986); F. J. Narcowich and R. F. O’Connell, Phys. Rev. A 34, 1 (1986); M. Moshinsky, in Proceedings of the First International Conference on the Physics of Phase Space, edited by Y. S. Kim and W. W. Zachary ( Springer-Verlag, Heidelberg, 1987 ).Google Scholar
  13. 13.
    H. Sumi, Phys. Rev. B 27, 2374 (1983); 29, 4616 (1984); J. V. Jose, ibid. 29, 2836 (1984); R. F. O’Connell and J. Wang, Phys. Rev. A 31, 1707 (1985); F. Barocchi, M. Neumann, and M. Zoppi, ibid. 31, 4105 (1985); R. Dickman and R. F. O’Connell, Phys. Rev. B 32, 471 (1985); R. F. O’Connell, in Proceedings of the First International Conference on the Physics of Phase Space, edited by Y. S. Kim and W. W. Zachary ( Springer-Verlag, Heidelberg, 1987 ).Google Scholar
  14. 14.
    H. W. Lee and M. O. Scully, J. Chem. Phys. 73, 2238 (1980); 77, 4604 (1982); J. P. Dahl and M. Springborg, Mol. Phys. 47, 1001 (1982); F. H. Ree, J. Chem. Phys. 78, 409 (1983); J. M. Gracia-Bondia, Phys. Rev. A 30, 691 (1984); B. C. Eu, J. Chem. Phys. 78, 409 (1984); L. Cohen, ibid. 80, 4277 (1984); K. Takatsuka and H. Nakamura, ibid. 82, 2573 (1985); R. L. Sundberg, A. Abramson, J. L. Kinsey, and R. W. Fied, ibid. 83, 466 (1985).Google Scholar
  15. 15.
    E. J. Heller, J. Chem. Phys. 67, 3339 (1977); 71, 3383 (1979); M. V. Berry, Philos. Trans. R. Soc. London. Ser. A 287, 273 (1977); V. P. Maslov and M. V. Fedoriuk, Semiclassical Approximation in Quantum Mechanics (Reidel, Dordrecht, 1981); R. T. Prosser, J. Math. Phys. 24, 548 (1983); H. W. Lee and M. O. Scully, Found. Phys. 13, 61 (1983); M. Feingold and A. Peres, Phys. Rev. A 31, 2472 (1985); A. M. Ozorio de Almeida, Ann. Phys. 145, 100 (1983); M. Sirugue, M. Sirugue-Collin, and A. Truman, Ann. Inst. Henri Poincaré 41, 429 (1984); S. Shlomo, Nuovo Cimento 87A, 211 (1985); S. J. Chang and K. J. Shi, Phys. Rev. A 34, 7 (1985); R. G. Littlejohn, Phys. Rep. 138, 193 (1986).Google Scholar
  16. 16.
    J. Klauder, and E. C. G. Sudarshan, Fundamentals of Quantum Optics (Benjamin, New York, 1968); W. H. Louisetl, Quantum Statistical Properties of Radiation (Wiley, New York, 1973); B. V. K. Vijaya Kumar and C. W. Carroll, Opt. Eng. 23, 732 (1984); R. L. Easton, A. J. Ticknor, and H. H. Barrett, ibid. 23, 738 (1984); R. Procida and H. W. Lee, Opt. Commun. 49, 201 (1984); N. S. Subotic and B. E. A. Saleh, ibid. 52, 259 (1984); A. Conner and Y. Li, Appl. Opt. 24, 3825 (1985); S. W. McDonald and A. N. Kaufman, Phys. Rev. A 32 1708 (1985); O. T. Serima, J. Javanainen, and S. Varro, ibid. 33, 2913 (1986); K. J. Kim, Nucl. Instrum. A 246, 71 (1986); H. Szu, in Proceedings of the First International Conference on the Physics of Phase Space, edited by Y. S. Kim and W. W. Zachary ( Springer-Verlag, Heidelberg, 1987 ).Google Scholar
  17. 17.
    E. P. Wigner, Ann. Math. 40, 149 (1939).CrossRefMathSciNetGoogle Scholar
  18. 18.
    A. Janner and T. Janssen, Physica 60, 292 (1972).CrossRefMathSciNetGoogle Scholar
  19. 19.
    J. W. Goodman, Fourier Optics (McGraw-Hill, New York, 1968); E. Gordin, Waves and Photons (Wiley, New York, 1982 ); W. H. Steel, Interferometry, 2nd ed. ( Cambridge University Press, London, 1983 ).Google Scholar
  20. 20.
    V. Bargmann, Ann. Math. 48, 568 (1947); M. Miller, Symmetry Groups and Their Applications ( Academic, New York, 1972 ).Google Scholar
  21. 21.
    E. Inonu and E. P. Wigner, Nuovo Cimento 9, 705 (1952).Google Scholar
  22. 22.
    R. Hakim and H. Sivak, Ann. Phys. 139, 230 (1982); G. G. Emch, J. Math. Phys. 23, 1785 (1982); D. Vasak, M. Gyulassy, and H. T. Elze, Ann. Phys. (N.Y.) 173, 462 (1987).Google Scholar
  23. 23.
    V. Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci. (USA) 34, 211 (1948). This paper discusses the unitary transformation of wave functions from one Lorentz frame to another frame.Google Scholar
  24. 24.
    For Lorentz transformations of the harmonic oscillator wave functions, see Y. S. Kim, M. E. Noz, and S. H. Oh, Am. J. Phys. 47, 892 (1979).Google Scholar
  25. 25.
    For earlier papers on the covariance of phase space, see D. G. Currie, T. F. Jordan, and E. C. G. Sudarshan, Rev. Mod. Phys. 35, 350 (1963); A. Das, Prog. Theor. Phys. 70, 1666 (1983); S. T. Ali and E. Prugovecki, Acta Applicandae Math. 6, 47 (1986).Google Scholar
  26. 26.
    W. Schleich and J. A. Wheeler, in Proceedings of the First International Conference on the Physics of Phase Space, edited by Y. S. Kim and W. W. Zachary (Springer-Verlag, Heidelberg, 1987). For earlier papers on the squeezed states in phase space, see D. Stoler, Phys. Rev. D 1, 3217 (1970); H. P. Yuen, Phys. Rev. A 13, 2226 (1976).Google Scholar
  27. 27.
    For a recent discussion of this subject in terms of modern mathematics, see C. L. Fefferman, Bull. Am. Math. Soc. 9, 129 (1983).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Y. S. Kim
  • E. P. Wigner

There are no affiliations available

Personalised recommendations