Advertisement

Cylindrical Group and Massless Particles

  • Y. S. Kim
  • E. P. Wigner
Chapter
Part of the The Scientific Papers book series (WIGNER, volume A / 3)

Abstract

It is shown that the representation of the E(2)-like little group for photons can be reduced to the coordinate transformation matrix of the cylindrical group, which describes movement of a point on a cylindrical surface. The cylindrical group is isomorphic to the two-dimensional Euclidean group. As in the case of E(2), the cylindrical group can be regarded as a contraction of the three-dimensional rotation group. It is pointed out that the E(2)-like little group is the Lorentz-boosted O(3)-like little group for massive particles in the infinite-momentum/zeromass limit. This limiting process is shown to be identical to that of the contraction of O (3) to the cylindrical group. Gauge transformations for free massless particles can thus be regarded as Lorentz-boosted rotations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    E. Inonu and E. P. Wigner, Proc. Natl. Acad. Sci. USA 39, 510 (1953); J. D. Talman, Special Functions, A Group Theoretical Approach Based on Lectures by E. P. Wigner (Benjamin, New York, 1968 ). See also R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications in Physics ( Wiley, New York, 1974 ).Google Scholar
  2. 2.
    E. P. Wigner, Ann. Math. 40, 149 (1939); V. Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci. USA 34, 211 (1946); E. P. Wigner, Z. Phys. 124, 665 (1948); A. S. Wightman, in Dispersion Relations and Elementary Particles, edited by C. De Witt and R. Omnes (Hermann, Paris, 1960); M. Hamer-mesh, Group Theory (Addison-Wesley, Reading, MA, 1962); E. P. Wigner, in Theoretical Physics, edited by A. Salam (IAEA, Vienna, 1962); A. Janner and T. Jenssen, Physics 53, 1 (1971); 60, 292 (1972); J. L. Richard, Nuovo Cimento A 8, 485 (1972); H. P. W. Gottlieb, Proc. R. Soc. London Ser. A 368, 429 (1979); H. van Dam, Y. J. Ng, and L. C. Biedenharn, Phys. Lett. B 158, 227 (1985). For a recent textbook on this subject, see Y. S. Kim and M. E. Noz, Theory and Applications of the Poincaré Group (Reidel, Dordrecht, Holland, 1986 ).Google Scholar
  3. 3.
    E. P. Wigner, Rev. Mod. Phys. 29, 255 (1957). See also D. W. Robinson, HeIv. Phys. Acta 35, 98 (1962); D. Korff, J. Math. Phys. 5, 869 (1964); S. Weinberg, in Lectures on Particles and Field Theory, Brandeis 1964,edited by S. Deser and K. W. Ford (Prentice-Hall, Englewood Cliffs, NJ, 1965) Vol. 2; S. P. Misra and J. Maharana, Phys. Rev. D 14, 133 (1976); D. Han, Y. S. Kim, and D. Son, J. Math. Phys. 27, 2228 (1986).Google Scholar
  4. 4.
    S. Weinberg, Phys. Rev. B 134, 882 (1964); B 135, 1049 (1964); J. Kuperzstych, Nuovo Cimento B 31, 1 (1976); D. Han and Y. S. Kim, Am. J. Phys. 49, 348 (1981); J. J. van der Bìj, H. van Dam, and Y. J. Ng, Physica A 116, 307 (1982); D. Han, Y. S. Kim, and D. Son, Phys. Rev. D 31, 328 (1985).Google Scholar
  5. 5.
    D. Han, Y. S. Kim, and D. Son, Phys. Rev. D 26, 3717 (1982). For an earlier effort to study the E(2)-like little group in terms of the cylindrical group, see L. J. Boya and J. A. de Azcarraga, An. R. Soc. Esp. Fis. Quim. A 63, 143 (1967). We are grateful to Professor Azcarraga for bringing this paper to our attention.Google Scholar
  6. 6.
    P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949); L. P. Parker and G. M. Schmieg, Am. J. Phys. 38, 218, 1298 (1970); Y. S. Kim and M. E. Noz, J. Math. Phys. 22, 2289 (1981).Google Scholar
  7. 7.
    D. Han, Y. S. Kim, and D. Son, Phys. Lett. B 131, 327 (1983); D. Han, Y. S. Kim, M. E. Noz, and D. Son, Am. J. Phys. 52, 1037 (1984). These authors studied the correspondence between the contraction of 0(3) to E(2) and the Lorentz boost of the 0(31-like little group.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Y. S. Kim
  • E. P. Wigner

There are no affiliations available

Personalised recommendations