Advertisement

Fifty Years of Symmetry Operators

  • E. P. Wigner
Chapter
Part of the The Scientific Papers book series (WIGNER, volume A / 3)

Abstract

The title of my address, so kindly provided by the leadership of this conference, clearly indicates that I should be principally concerned with the role which the symmetry and invariance principles play in quantum mechanics, with their applications and effectiveness — it was precisely 50 years ago that these were recognized. Nevertheless, I like to say a few words about the role of symmetry principles in pre-quantum theory because the comparison of this role with the role played by the same principles at present seems to me very interesting.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. F. C. Hessel: Ostwald’s Klassiker der exakten Naturwissenschaften, No. 89. Leipzig, 1897, p. 91Google Scholar
  2. 2.
    A. Schönflies: Kristallsysteme und Kristallstruktur. Leipzeig, 1891Google Scholar
  3. 3.
    E. S. Fedorov: Zap. Min. Obsk. 38, 1 (1891). ( Trans.: Min. Soc. )Google Scholar
  4. 4.
    N. Steno: De solido intra solidem naturaliter contento dissertationis prodromus. Florence, 1669Google Scholar
  5. 5.
    G. Hamel: Z. Math. Phys. 50,1 (1904); F. Engel, Nachr. Ges. Wiss. Göttingen, 1918, p.375; E. Nöther, ibid, p.235Google Scholar
  6. 6.
    A. Kretschman: Ann. Physik 53, 575 (1917)Google Scholar
  7. 7.
    The role of invariance principles in natural philosophy. Rendiconti della Scuola Internazionale di Fisica Enrico Fermi, Corso XXIX, Academic Press, New York 1964Google Scholar
  8. 8.
    V. Fock: The theory of space, time, and gravitation. Pergamon Press, London 1957Google Scholar
  9. 9.
    M. Gell-Mann: Phys. Rev. 125, 1067 (1962); Y. Ne’eman: Nuclear Phys. 26, 222 (1961)Google Scholar
  10. 10.
    E. P. Wigner: Ann. Math.. 40, 149 (1939)CrossRefMathSciNetGoogle Scholar
  11. 11.
    E. P. Wigner: Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspectren. Vieweg, Braunschweig 1931. Somewhat updated English translation: Academic Press, New York 1959. — M. Hamermesh: Group theory and its application to physical problems. Addison Wesley Publ. Co., Reading, Mass., 1962Google Scholar
  12. 12.
    M. Born and J. R. Oppenheimer: Ann Physik 84, 457 (1927)ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    T. D. Lee and C. N. Yang: Phys. Rev. 104, 254 (1956)ADSCrossRefGoogle Scholar
  14. 14.
    C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes and R. P. Hudson: Phys. Rev. 105, 1413 (1957)ADSCrossRefGoogle Scholar
  15. 15.
    G. Herzberg’s books, in particular his Spectra of Diatomic Molecules (Van Nostrand, New York, 1939 and 1950) describe very vividly both the applicability of the classical picture and the deviations from it in the case of identical atoms. I. Kovacs’ Rotational Structure in the Spectra of Diatomic Molecules (Hilger, London, 1969) gives even further details.Google Scholar
  16. 16.
    K. F. Bonhöffer and P. Harteck: Z. Phys. Chem. B4, 113 (1929)Google Scholar
  17. 17.
    J. Callaway: Electron band theory. Academic Press, New York 1964Google Scholar
  18. 18.
    M. J. O. Strutt: Ann. Physik 85, 129 (1928); F. Bloch: Z. Phys. 52, 555 (1928); R. Peierls: Ann. Physik 4, 121 (1930); L. P. Bouckaert, R. Smoluchowski and E. Wigner: Phys. Rev. 50, 58 (1936)Google Scholar
  19. 19.
    A very interesting discussion on this subject was presented at the 14th Solvay Conference: Symmetry properties of nuclei. Gordon and Breach, New York 1974Google Scholar
  20. 20.
    M. Gell-Man and Y. Ne’eman: The eightfold way. Benjamin, New York 1964; A. Zichichi (ed.): Highlights in particle physics. Editrice Compositori, Bologna 1973Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • E. P. Wigner

There are no affiliations available

Personalised recommendations