Advertisement

Relativistic Invariance in Quantum Mechanics

  • E. P. Wigner
Chapter
Part of the The Scientific Papers book series (WIGNER, volume A / 3)

Summary

(*). — A detailed analysis is made of the theoretical possibilities of constructing a quantum mechanics and consequently of a description of the elementary particles, based on a definition of the postulates of relativistic invariance and then on the simmetry properties connected with the complete Lorentz group, including displacements in space and time and inversions of both the space and the time coordinates. It is then pointed out how the validity of every conclusion deriving from simmetry considerations depends essentially from the fundamental problem of the a «measurability» of the field quantities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. (1).
    P. A. M. Dirac:Proc. Roy. Soc., 123, 714 (1929).ADSCrossRefzbMATHGoogle Scholar
  2. (2).
    P. A. M. Dirac:Proc. Roy. Soc., 117, 610 (1928); 118, 351 (1928).ADSCrossRefzbMATHGoogle Scholar
  3. (3).
    W. Iieisenberg and W. Pauli:Zeits. f. Plhys., 56, 1 and 59, 168 (1929); P. Jordan and O. Klein:Zeits. f. Phys., 45, 751 (1927).Google Scholar
  4. (4).
    W. Furry: phys. rev., 51,125(1937); L. Wolfenstein and D. G. Raveniiall:Phys. Rev., 88. 279 (1952); J. Schwinger:Phys. Rev., 82, 914 (1951); G. Lünrlts:Zeits. f. Phys., 133, 325 (1952);Kon. Daltske Vidensk. selskab, Math.-fys.Madd., 28, No. 5 (1954).Google Scholar
  5. (5).
    W. Heitler: Proc. Roy. Irish Acad., 51, 33 (1946).Google Scholar
  6. (6).
    R. Haag: mimeographed notes (1953), unpublished.Google Scholar
  7. (7).
    W. Heisenberg: Zeits. f. Phys.,43, 172 (1927) and Physikalische Prinzipien der Quantentheorie(Leipzig, 1930); N. Bohr: Nature,121, 580 (1928); J. v. Neumann: Mathematical Foundations of Quantum Mechanics(Princeton, 1955), Chapter VI.Google Scholar
  8. (8).
    Cf. G. Wick, A. S. Wightman and E. P. Nigner:Phys. Rev., 88, 101 (1952).ADSCrossRefzbMATHGoogle Scholar
  9. (9).
    E. Schrödinger: Sitzungsber. preuss. Akad. Wiss. Physik.-math. Kl.,p. 418 (1930).Google Scholar
  10. (10).
    The concept of time dependent operators was introduced already by M. Born and P. Jordan: Zeits. f. Ploys., 34, 858 (1925).CrossRefGoogle Scholar
  11. (11).
    These equations are contained already in the articles of reference (3).Google Scholar
  12. (12).
    E. P. Wigner: Gruppentheorie und ihre flnwenrlungen,etc. ( Braunschweig, 1931 ), Anhang to Chapter XX.Google Scholar
  13. (13).
    E. P. Wigner:Ann. of Math., 40, 149 (1939).CrossRefMathSciNetGoogle Scholar
  14. (14).
    Cg. e.g. J. M. Jauoh and F. Rohrlich:The Theory Of Photons and Electrons ( Cambridge, Mass., 1955 ), p. 11.Google Scholar
  15. (15).
    For the problematical nature of such proofs cf. L. Garding and A. S. Wight-Man: Proc. Nat. Acad. Sc., 40, 617, 622 (1954) also L. van Hove: Physica, 18, 145 (1952) and R. Haag: reference (6) and Iton. Danske Vidensk. Selskab,Math.-fys. Medd., 29, No. 12 (1955).Google Scholar
  16. (16).
    Cf. reference (8) and L. L. Poldy:Phys. Rev., 93, 1395 (1953); S. Watanabe:Rev. Mod. Phys., 27, 26, 40 (1955).Google Scholar
  17. (17).
    N. Bohr and L. Rosenfeld: Non. Danske Vid. Selskab Mat.-fys. Medd. 12, No. 8 (1933);Phys. Rev., 78, 194 (1950); E. CORINADLESI:Nuovo Cimento, 8, 494 (1951); 9, 194 (1952). In particulars these articles do not deal fully with the problems raised by O. Halpern and M. H. Johnson (Phys. Rev., 59, 896 (1941)). Cf. also B. Ferretti:Nuovo Cimento, 12, 558 (1954).Google Scholar
  18. (18).
    It is contained in various publications such as reference (13) and V. Bargmann and E. P. Wigner: Proc. Nat. Acad. Sc.,34, 211 (1948); E. Inonu and E. P. Wigner:Nuovo Cimento,9, 719 (1952); R. Haag: reference (15).Google Scholar
  19. (19).
    Cf. AL. Proca:Journ. de Phys., 7, 347 (1936); N. Kemmer:Proc. Roy. Soc., 166, 127 (1938); 173, 91 (1939); W. Pauli and M. Fierz:Hely. Phys. Acta, 12, 297 (1939); L. de Broglie: Compt. Rend., 209, 265 (1939); H. A. Kramers, F.T. Belinfante and T. K. Lubanski: Physica, 8; 597 (1941); H. Biiabiia:Rev. Mod. Phys.,. 17, 200 (1945); H. Hönl and H. Boerner:Zeits. f. Naturforsch., 5a, 353 (1950); K. J. LE Couteur:Proc. Roy. Soc., A 202, 284, 394 (1950); F. L. Bauer:Ber. Bayer. Akad. d. Wissensch., p. 112 (1952); H. Yukawa:Phys. Rev., 91, 415, 416 (1953).Google Scholar
  20. (20).
    This was recognized already by P.A.M. Dirac: Proc. Roy. Soc., 114, 243(1927). Cf. also T. D. Newton and E. P. Wigner:Rev. Mod. Phys., 21, 400 (1949).Google Scholar
  21. (21).
    This point is indicated also by H. Umezawa, S. Kameiuchi and S. Tanaka:Frog. Theor. Phys, 12, 383 (1955). The same result was obtained by the present writer on the basis of the consideration.of time displacements and the positive nature of the energy(Giittinger Nachr), 1932, p. 546 ).Google Scholar
  22. (22).
    See reference (13). It should be noted, however, that the time inversion considered there is Pauli’s unitary operator (cf.Rev. Mod. Phys.,13, 203 (1941)).Google Scholar
  23. (23).
    A. Papapetrou:Pralctika Acad. Athènes, 14, 540 (1939); 15, 404 (1940); M. H. L. Pryce:Proc. Roy. Soc., 195, 62 (1948).Google Scholar
  24. (24).
    Cf. L. Michel: Report on the 1953 meeting of the IUPAP,p. 272. This article contains also information on the rules resulting from the symmetries mentioned in reference (4).Google Scholar
  25. (25).
    L. D. Landau:Dokl. Jihad. Nauk USSR, 60, 207 (1948); C.N. Yang:Phys. Rev., 77, 242 (1950).Google Scholar
  26. (26).
    Some results for the angular distribution and polarisation were obtained already by C. L. Critchfield and E. Teller:Phys. Rev., 60, 10 (1941); D. R. Hamilton:.Phys. Rev., 71, 546 (1947); E. Eisner and R. G. Sacns:Phys. Rev., 72, 680 (1947); L. Wolfenstein and R. G. Sacns:Phys. Rev., 73, 528-(1948); C. N. Yang:Phys. Rev., 74, 764 (1948).Google Scholar
  27. (27).
    My indebtedness is particularly great to Drs. V. Bargmann and A. S.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • E. P. Wigner

There are no affiliations available

Personalised recommendations