Advertisement

Redoxreaktionen, Sauerstoff und oxidative Phosphorylierung

  • U. Brandt
Chapter
Part of the Springer-Lehrbuch book series (SLB)

Zusammenfassung

Alle bekannten Lebensformen müssen aus ihrer Umgebung ständig Energie in Form von Nährsubstraten oder Licht aufnehmen, um ihre hochgeordneten, komplexen Strukturen aufrecht zu erhalten und die unterschiedlichen biologischen Aktivitäten zu entfalten.Wachstum und Vermehrung und somit die Fähigkeit einer Lebensform, sich durchzusetzen, hängen deshalb kritisch von der Effizienz und Anpassungsfähigkeit der Versorgung ihrer Zellen mit Energie ab. Außer bei photosynthetischen Organismen sind es letztlich immer exergone Redoxreaktionen, die für die Bereitstellung der beiden„Energiewährungen“ der Zelle, der reduzierten Coenzyme und ATP, verantwortlich sind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Original- und Übersichtsarbeiten

  1. Abrahams JP, Leslie Agw, Lutter R, Walker JE (1994) Structure at 2.8 A resolution of F1-Atpase from bovine heart mitochondria. Nature 370: 621–628PubMedCrossRefGoogle Scholar
  2. Berry EA, Guergova-Kuras M, Huang LS, Crofts AR (2000) Structure and function of cytochrome be complexes. Annu Rev Biochem, 69: 1005–1075PubMedCrossRefGoogle Scholar
  3. Brand MD (ed) (2001) Mitochondrial control and efficacy. Biochim Biophys Acta–Bioenergetics 1504 (1): 1–172Google Scholar
  4. Brandt U (ed) (1998) Structure and function of complex I. Biochim Biophys Acta–Bioenergetics 1364 (2): 86–296Google Scholar
  5. Darrouzet E, Moser CC, Dutton PL, Daldal F (2001) Large scale domain movement in cytochrome bcl: a new device for electron transfer in proteins. Trends Biochem Sci 26: 445–451PubMedCrossRefGoogle Scholar
  6. DI Mauro S, Bonilla E, Zeviani M, et al. (1985) Mitochondrial myopathies. Ann Neurol (United States) 17 (6): 521–538Google Scholar
  7. Frey TG, Mannella CA (2000) The internal structure of mitochondria. Trends Biochem Sci 25: 319–324PubMedCrossRefGoogle Scholar
  8. Guengrich FP (1999) Cytochrome P-450 3A4: Regulation and role in drug metabolism Ann Rev Pharm Toxicol 39: 1–17Google Scholar
  9. Huizing M, Ruitenbeek W, Van Den Heuvel LP, Dolce V, Iacobazzi V, Smeitink JA, Palmieri F, Trijbels JM (1998) Human mitochondrial trans-membrane metabolite carriers: tissue distribution and its implication for mitochondrial disorders. J Bioenerg Biomembr 30: 277–284PubMedCrossRefGoogle Scholar
  10. Hunte C, Koepke J, Lange C, Michel H (2000) Structure at 2.3 angstrom resolution of the cytochrome bc(1) complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Structure 8: 669–684PubMedCrossRefGoogle Scholar
  11. KRÄMer R, Palmieri F: Metabolite Carriers IN Mitochondria (1992) In: Ernster L (ed) Molecular Mechanisms in Bioenergetics. New Comprehensive Biochemistry, Vol. 23, Elsevier, Amsterdam London New York TokyoGoogle Scholar
  12. Junge W, Lill H, Engelbrecht S (1997) Atp synthase: an electrochemical transducer with rotatory mechanisms. Trends Biochem Sci 22 (11): 420–423PubMedCrossRefGoogle Scholar
  13. Lancaster Crd, KRÖGer A, Auer M, Michel H (1999) Structure of fumarate reductase from Woli- nella succinogenes at 2.2 angstrom resolution. Nat- ure, 402: 377–385Google Scholar
  14. Michel H (1999) Cytochrome c oxidase: Catalytic cycle and mechanisms of proton pumping-A discussion. Biochemistry US 38: 15129–15140CrossRefGoogle Scholar
  15. Miles CS, Ost Twb, Noble MA, Munro AW, Chapman SK (2000) Protein engineering of cytochromes P-450. Biochim Biophys Acta–Prot. Struct. Mol. Enzymol. 1543: 383–407Google Scholar
  16. Ohnishi T, Moser CC, Page CC, Dutton PL, Yano T (2000) Simple redox-linked proton-transfer design: new insights from structures of quinol-fumarate reductase. Structure 8: Xxiii-Xxxii Google Scholar
  17. Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 25: 502–508PubMedCrossRefGoogle Scholar
  18. Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol. 82: 291–295PubMedGoogle Scholar
  19. Smeitink J, Van Den Heuvel L, And Dimauro S (2001) The genetics and pathology of oxidative phosphorylation. Nature Reviews Genetics 2: 342–352PubMedCrossRefGoogle Scholar
  20. Stock D, Gibbons C, Arechaga I, Leslie Agw, Walker JE (2000) The rotary mechanism of Atp synthase. Current Opinion in Structural Biology 10: 672–679PubMedCrossRefGoogle Scholar
  21. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R,Yoshikawa 5 (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8. Science 272: 1136–1144PubMedCrossRefGoogle Scholar
  22. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283: 1482–1488PubMedCrossRefGoogle Scholar
  23. Yagi T, Matsuno-Yagi A (2001) Complex I. J Bioener Biomem 33 (3): 1–266CrossRefGoogle Scholar

Monographien und Lehrbücher

  1. Ffler G, Petrides PE (1998) Biochemie und Pathobiochemie. 6. Auflage, Springer Verlag, Berlin Heidelberg NewYorkCrossRefGoogle Scholar
  2. Nicholls DG, Ferguson SJ (1997) Bioenergetics 2. Academic Press, LondonGoogle Scholar
  3. Pon LA, Schon EA (eds) (2001) Mitochondria. Methods in Cell Biology, Vol. 65, Academic Press, LondonGoogle Scholar
  4. Scheffler IE ( 1999 ) Mitochondria. John Wiley Sons, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • U. Brandt

There are no affiliations available

Personalised recommendations