Advertisement

Stoffwechsel von Triacylglycerinen und Fettsäuren

  • G. Löffler
Chapter
Part of the Springer-Lehrbuch book series (SLB)

Zusammenfassung

Wegen ihrer vielfältigen und unerlässlichen Funktionen wäre ohne Lipide Leben nicht möglich. Lipide bilden die Grundstruktur sämtlicher zellulären Membranen und ermöglichen auf diese Weise erst die Existenz von Zellen, deren Inneres gegen die Außenwelt abgeschirmt ist. Über diese entscheidende Funktion hinaus spielen Lipide in Form der Triacylglycerine eine große Rolle als intrazelluläre Energiespeicher. Sie kommen in nahezu allen Zellen vor, werden jedoch in großen Mengen in einem spezifischen Gewebe, dem Fettgewebe gespeichert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Cases S et al. (1998) Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci Usa 95: 13 018–13 023Google Scholar
  2. Coleman RA, Lewin TM, Muoio DM (2000) Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annu Rev Nutr 20: 77–103PubMedCrossRefGoogle Scholar
  3. Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318: 1–14PubMedGoogle Scholar
  4. Gibbons FG, Islam K, Pease RJ (2000) Mobilisation of triacylglycerol stores. Biochim Biophys Acta 1483: 37–57PubMedCrossRefGoogle Scholar
  5. Goldberg I, Merkel M (2001) Lipoprotein Lipase: Physiology, Biochemistry and Molecular Biology. Front Biosci 6: D388–405PubMedCrossRefGoogle Scholar
  6. Goodwin DC, Landino LM, Marnett LJ (1999) Effects of nitric oxide and nitric oxide-derived species on prostaglandin endoperoxide synthase and prostaglandin biosynthesis. Faseb J 13: 1121–1136PubMedGoogle Scholar
  7. Haemmerle G et al.: Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle and testis. Jbc Papers in Press. Published on November 20, 2001 as Manuscript Mil035 5200Google Scholar
  8. Jump DB, Clarke SD (1999) Regulation of gene ex- pression by dietary fat. Annu Rev Nutr 19: 63–90PubMedCrossRefGoogle Scholar
  9. Kim KH (1997) Regulation of mammalian acetyl-coenzyme A carboxylase. Annu Rev Nutr 17: 77–99PubMedCrossRefGoogle Scholar
  10. Narumiya S, Sugimoto Y, Ushikubi F (1999) Prostanoid Receptors: Structures, Properties, and Functions. Physiol Rev 79: 1193–1226PubMedGoogle Scholar
  11. Osterlund T (2001) Structure-function relationships of hormone sensitive lipase. Eur J Biochem 268: 1899–1907PubMedCrossRefGoogle Scholar
  12. Saltiel AR (2001) Another hormone-sensitive triglyceride lipase in fat cells? Proc Natl Acad Sci (Usa) 97: 535–537CrossRefGoogle Scholar
  13. Smith S (1994) The animal fatty acid synthase: one gene, one polypeptide, seven enzymes.Google Scholar
  14. Faseb J 8: 1248–1259Google Scholar
  15. Smith WL, Dewitt DL, Garavito RM (2000) Cyclooxygeases: strucutural, cellular and molecular biology. Annu Rev Biochem 69: 145–182PubMedCrossRefGoogle Scholar
  16. Stahl A, Gimeno RE, Tartaglia LA, Lodish HF (2001) Fatty acid transport proteins: a current view of a growing family. Trends in Endocrinology and Metabolism 12: 266–273PubMedCrossRefGoogle Scholar
  17. SuL HS, Wang D (1998) Nutritional and hormonal regulation of enzymes in fat synthesis: Studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription. Annu Rev Nutr 18: 331–51CrossRefGoogle Scholar
  18. Zammit VA (1999) The malonyl-CoA-long-chain acylCoA axis in the maintenance of mammalian cell function. Biochem J 343: 505–515PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • G. Löffler

There are no affiliations available

Personalised recommendations