Advertisement

Application of Neuro-Fuzzy Logic for Early Detection and Diagnostics in Gas Plants and Combustion Chambers at ENEA

  • Massimo Sepielli
  • P. Carmelo Incalcaterra
  • Massimo Presaghi
  • Paolo F. Fantoni
  • Davide Roverso
Part of the Power Systems book series (POWSYS)

Abstract

This chapter presents the work done in collaboration between ENEA and the OECD Halden Reactor Project (HRP), which resulted in the application of HRP neuro-fuzzy tools- PEANO [1, 2, 3, 4] and ALADDIN [5, 6] to problems of gas plant control, either related to measurement calibration or to process instability.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fantoni PF (1996) Neuro-Fuzzy models applied to full range signal validation in NPP. In: Proceedings of Nucl. Plant Instrumentation, Control and Human-Machine Interface Technologies, NPIC HMIT’96, The Pennsylvania State Univ., USA.Google Scholar
  2. 2.
    Fantoni PF, Mazzola A (1996) Multiple-Failure Signal Validation in Nuclear Power Plants using Artificial Neural Networks. Nuclear Technology.Google Scholar
  3. 3.
    Fantoni PF, Renders JM (1998) On-Line Performance Estimation and Condition Monitoring Using Neuro-Fuzzy Techniques. In: Proccedings of the Workshop on On-Line Fault Detection and Supervision in the Chemical Process Industries, Lyon, France.Google Scholar
  4. 4.
    Fantoni PF, Mazzola A (1996) Accuracy Estimate of Artificial Neural Networks Based Models for Industrial Applications. Braunschweig B, Bremdal B (eds) Artificial Intelligence in the Petroleum Industry.Google Scholar
  5. 5.
    Roverso D (2000) Soft Computing Tools for Transient Classification. Information Sciences 127 (3–4): 137–156.CrossRefGoogle Scholar
  6. 6.
    Roverso D (2000) Multivariate Temporal Classification by Windowed Wavelet De- composition and Recurrent Neural Networks. In: Proceedings of the 3rd ANS International Topical Meeting on Nuclear Plant Instrumentation, Control and Human-Machine Interface Technologies, NPIC HMIT 2000, Washington DC.Google Scholar
  7. 7.
    Gustafson DE, Kessel WC (1979) Fuzzy Clustering with a fuzzy covariance matrix. In. Proc. IEEE CDC, San Diego, CA.Google Scholar
  8. 8.
    Tou JT, Gonzalez RC (1974) Pattern Recognition Principles, Addison-Wesley Publishing Company, Reading MA.zbMATHGoogle Scholar
  9. 9.
    Krishnapuram R, Keller J (1993) A possibilistic approach to clustering. IEEE Trans- actions on Fuzzy Systems 1 (2): 98–100.CrossRefGoogle Scholar
  10. 10.
    Annunziato M, Coppola G, Presaghi M, Presaghi R, Puglisi G, Romanello F (2001) Acoustic Analysis Aimed at Characterizing Combustion Instability in Premixed Burners. ENEA RT.Google Scholar
  11. 11.
    McManus KR, Poinsot T, Candel S M (1993) A Review of Active Control of Combustion Instabilities. Progr. Energy Combustion Science 19: 1–29.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Massimo Sepielli
    • 1
  • P. Carmelo Incalcaterra
    • 1
  • Massimo Presaghi
    • 1
  • Paolo F. Fantoni
    • 2
  • Davide Roverso
    • 2
  1. 1.ENEA (Ente Nazionale per Energia, Innovazione e Ambiente)RomeItaly
  2. 2.Institutt for energiteknikkOECD Halden Reactor ProjectHaldenNorway

Personalised recommendations