Advertisement

Diagnosis of Measuring Systems Using Cluster Analysis Applied to Hydrostatic Water Level Measurement

  • A. Traichel
  • V. Schneider
  • W. Kästner
  • R. Hampel
Chapter
Part of the Power Systems book series (POWSYS)

Abstract

For a continuous monitoring, control, and diagnosis of high transient technical processes in safety-related systems as Nuclear Technology it is necessary to provide the best knowledge about the actual state of process. Especially the supervision of water level within pressure vessels with boiled water-steam mixture (pressuriser, steam generator, reactor pressure vessel) during operational and accidental transient processes is very important. A diagnosis system is proposed, which is subdivided in two components, a part for fault detection and a part for fault identification. The diagnosis component for fault detection using cluster analysis is described. The procedure of cluster analysis is demonstrated. The results of fault diagnosis using new validity functions are presented for a Blow Down Experiment at our pressuriser test facility.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hampel R, Kästner W (2001) Wissensbasierte Systeme zur Diagnose der Funktionsfähigkeit und Fehlerdiagnose fair hydrostatische Füllstandsmeßsysteme - Band I und III. Technischer Bericht zum BMBF-Projekt 150 12 04, HS Zittau/Görlitz (FH)Google Scholar
  2. [2]
    Traichel A, et. al. (2000) Verification of Simulation Results of Mixture Level Transients and Evaporation Processes in pressure vessels using Needle-shaped probes. Workshop Measuring Technique for two-phase transient and stationary flow, Rossendorf, GermanyGoogle Scholar
  3. [3]
    Hampel R, Kästner W, Fenske A, Vandreier B, Schefter, S (1999) Meß-und Automatisierungstechnik zur Störfallbeherrschung - Methoden der Signalverarbeitung, Simulation und Verifikation Abschlußbericht zum BMBF-Projekt 150 10 15, HTWS Zittau/Görlitz (FH)Google Scholar
  4. [4]
    Backer E (1995) Computer-assisted reasoning in cluster analysis. Prentice Hall, New York, LondonGoogle Scholar
  5. [5]
    Höppner F, Klawonn F, Kruse R (1997) Fuzzy-Clusteranalyse: Verfahren für die Bilderkennung, Klassifikation und Datenanalyse. Vieweg, BraunschweigGoogle Scholar
  6. [6]
    Beni G, Xie LX (1991) A Validity Measure for Fuzzy Clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence 13 8: pp. 841–847CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • A. Traichel
    • 1
  • V. Schneider
    • 1
  • W. Kästner
    • 1
  • R. Hampel
    • 1
  1. 1.Institute of Process Technique, Process Automation and Measuring Technique(IPM) at the University of Applied Sciences Zittau/GörlitzZittauGermany

Personalised recommendations