Verhandlungen pp 1007-1019 | Cite as

A molecular theory of cell membrane structure

  • J. David Robertson


Electron microscopy of peripherical nerve fibres in recent years has resulted in the establishment of the general patterns of organisation of both unmyelinated and myelinated nerve fibres (Gasser 1952, 1954, 1956; Geren 1954, 1956; Robertson 1955, 1957, 1958, 1959). From the relationships between the satellite Schwann cells and axons in myelinated fibres, it is possible to make certain deductions about the molecular structure of Schwann cell membranes. These depend on a correlation of electron microscope findings with polarization optical and X-ray diffraction evidence. It is the purpose of this short communication to review the findings related to this topic and to present certain evidence suggesting that the pattern of structure characterizing Schwann cell membranes is similar for many, perhaps all cell membranes and membranous cell organelles. Certain studies of lipid model systems are presented since they aid in the interpretation of electron micrographs of membranes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie, M., and Joan E. N. Haeysman: Exp. Cell Res. 6, 293 (1954).CrossRefGoogle Scholar
  2. Bahr, G. F.: Exp. Cell Res. 7, 457 (1954).CrossRefGoogle Scholar
  3. Danielli, J. F., and H. A. Davson: J. cell comp. Physiol. 5, 495 (1935).CrossRefGoogle Scholar
  4. Davson, H. A., and J. F. Danielli: The permeability of natural membranes. Cambridge: University Press 1943.Google Scholar
  5. Edelhoch, H., and J. D. Robertson: Unpublished data.Google Scholar
  6. Fernandez-Moran, H., and J. B. Finean: J. biophys. biochem. Cytol. 3, 725 (1957).CrossRefGoogle Scholar
  7. Finean, J. B.: Exp. Cell Res. 5, 202 (1953).CrossRefGoogle Scholar
  8. Finean, J. B. Exp. Cell Res. 6, 283 (1953).CrossRefGoogle Scholar
  9. Finean, J. B. and Millington, P. F.: J. biophys. biochem. Cytol. 3, 89 (1957).CrossRefGoogle Scholar
  10. Gasser, H. S.: Cold Spr. Harb. Symp. quant. Biol. 17, 32 (1952).Google Scholar
  11. Gasser, H. S., J. gen. Physiol. 38, 709 (1955).CrossRefGoogle Scholar
  12. Gasser, H. S., J. gen. Physiol. 39, 473 (1956).CrossRefGoogle Scholar
  13. Geren, B. B.: Exp. Cell. Res. 7, 558 (1954).CrossRefGoogle Scholar
  14. Geren, B. B., in Cellular mechanismus in differentiation, and growth. Ed. by D. Rudnick, Princeton Univ. Press, p. 213 (1956).Google Scholar
  15. Hess, A.: Proc. roy. Soc. B 144, 496 (1956).ADSCrossRefGoogle Scholar
  16. Peterson, E. R., S. M. Crain and M. R. Murray: Annat. Rec. 120, 357 (1958).Google Scholar
  17. Robertson, J. D.: J. biophys. biochem. Cytol. 1, 271 (1955).CrossRefGoogle Scholar
  18. Robertson, J. D., in Ultrastructure and chemistry of neural tissue, ed. by H. Waelsch, p. 1 (1956).Google Scholar
  19. Robertson, J. D., J. biophys. biochem. Cytol. 3, 1043 (1957).Google Scholar
  20. Robertson, J. D., J. Physiol. (Paris) 137, 6 (1957).Google Scholar
  21. Robertson, J. D., J. biophys. biochem. Cytol. 4, 349 (1958).Google Scholar
  22. Robertson, J. D., The ultrastructure of cell membranes and their derivatives. Biochem. Soc. Symp. 16, 3–43 (1959).Google Scholar
  23. Robertson, J. D., The molecular structure and contact relationships of cell membrane. Progr. Biophys. X (in press) (1959).Google Scholar
  24. Schmidt, W. J.: Z. Zellforsch. 23, 657 (1936).CrossRefGoogle Scholar
  25. Schmitt, F. O., R. S. Bear and G. L. Clark: Radiology 45, 131 (1935).Google Scholar
  26. Schmitt, F. O., R. S. Bear and Palmer J cell. comp. Physiol. 18, 31 (1941).Google Scholar
  27. Stoeckenius, W.: This volume p. 174.Google Scholar
  28. Weiss, P.: Int. Rev. Cytol. 7, 391 (1958).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • J. David Robertson
    • 1
  1. 1.University CollegeLondonUK

Personalised recommendations