Advertisement

Verhandlungen pp 967-987 | Cite as

Principles of ordering in fibrous systems

  • Alan J. Hodge

Abstract

The purpose of the present symposium is to identify and characterize those principles which determine order in biological systems in one, two, and three dimensions. However, such an analysis does not bear too close inspection, for, in reality, the fibrous systems possess considerable three-dimensional structure. Indeed, the presence of order in a system composed of macromolecules, usually of highly asymmetrical shape, implies a certain degree of three-dimensional crystallinity. The present paper will outline what is known of the principles involved in the aggregation of highly asymmetric macromolecules to form ordered fibrous structures, with attention being confined to the fibrous proteins. The “two-dimensional” membrane systems and the ways in which these structures are involved in the formation of higher order structures within the cell will be the province of the following articles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ingram, V. M.: Nature (Lond.) 180, 326 (1957).ADSCrossRefGoogle Scholar
  2. Pauling, L.: Amer. J. Psychiat. 113, 492 (1956).Google Scholar
  3. 2.
    Schmitt, F. O., J. Gross and J. H. Higrberger: Proc. nat. Acad. Sci. (Wash.) 39, 459 (1953). Gross, J., J. H. Higiberger and F. O. Schmitt: Proc. nat. Acad. Sci. (Wash.) 40, 679 (1954).ADSGoogle Scholar
  4. 3.
    Boedtker, H., and P. Doty: J. Amer. them. Soc. 78, 4267 (1956).CrossRefGoogle Scholar
  5. 4.
    Crick, F. H. C., and A. Rien: in Recent advances in gelatin and glue research. New York: Pergamon Press 1958.Google Scholar
  6. 5.
    Doty, P., and T. Nishihara: in Recent advances in gelatin and glue research. New York: Pergamon Press 1958.Google Scholar
  7. 6.
    Küux, K., W. Grassniann and V. Hofmann: Naturwissenschaften 44, 538 (1957).Google Scholar
  8. Küux, K., W.: Leder 9, 217 (1958).Google Scholar
  9. 7.
    Schmitt, F. O., J. Gross and J. H. Higrberger: Symposia Soc. exp. Biol. 9, 148 (1955).Google Scholar
  10. 8.
    Nisiirara, T., and P. Doty: Proc. nat. Acad. Sci. (Wash.) 44, 411 (1958).CrossRefGoogle Scholar
  11. 9.
    Hodge. A, J., and F. O. Schmitt: Proc. nat. Acad. Sci. (Wash.) 44, 418 (1958).CrossRefGoogle Scholar
  12. 10.
    Glimcher, M. J., A. J. Hodge and F. O. Schmitt: Proc. nat. Acad. Sci. (Wash.) 43, 860 (1957).CrossRefGoogle Scholar
  13. 11.
    Fitton-Jackson, S.: Proc. roy. Soc. (London) B, 146, 270 (1957).ADSCrossRefGoogle Scholar
  14. 12.
    Glimcher, M. J.: The molecular biology of the mineralized tissues, with particular reference to bone. Rev. mod. Phys. 31, 359 (1959).ADSCrossRefGoogle Scholar
  15. Glimcher, M. J. A. J. Hodge and F. O. Schmitt: The specificity of the macromolecular aggregation state of collagen in calcification. (In preparation).Google Scholar
  16. Glimcher, M. J. A. J. Hodge and F. O. Schmitt Electron optical and X-ray diffraction studies of bone and of collagens mineralized in vitro (In preparation.)Google Scholar
  17. 13.
    Bear, R. S.: J. Amer. them. Soc. 67, 1625 (1945).CrossRefGoogle Scholar
  18. 14.
    Huxley, H. E.: Proc. roy. Soc. (London) B 141, 59 (1953).ADSCrossRefGoogle Scholar
  19. 15.
    Hall, C. E., M. A. Jakus and F. O. Schmitt: Biol. Bull. 90, 32 (1946).CrossRefGoogle Scholar
  20. 16.
    Draper, M. H. and A. J. Hodge: Aust. J. exp. Biol. med. Sci. 27, 465 (1949).CrossRefGoogle Scholar
  21. 17.
    Draper, M. H. and A. J. Hodge.: Aust. J. exp. Biol. med. Sci. 28, 549 (1950).CrossRefGoogle Scholar
  22. 18.
    Hodge, A. J., H. E. Huxley and D. Spiro: J. exp. Med. 99, 201 (1954).CrossRefGoogle Scholar
  23. 19.
    Hodge, A. J., H. E. Huxley and D. Spiro: The fibrous proteins of muscle. Rev. mod. Phys., 31, 409 (1959).ADSCrossRefGoogle Scholar
  24. 20.
    Gergely, J.: J. biol. Chem. 200, 543 (1953).Google Scholar
  25. Mihalyi, E.: J. biol. Chem. 201, 197 (1953).Google Scholar
  26. Mihalyi, E. and A. G. Szent-Györgyi: J. biol. Chem. 201, 211 (1953).Google Scholar
  27. 21.
    Gergely, J., M. A. Gouvea and D. J. Karibian: J. biol. Chem. 212, 165 (1955).Google Scholar
  28. 22.
    Middlebrook, W. R.: The molecular architecture of the meromyosins. Abstr. of the meeting of the biophysical Soc. p. 46, Boston 1958.Google Scholar
  29. 23.
    Philpott, D. E., and A. G. Szent-Györgyi: Biochim. biophys. Acta 15, 165 (1954).Google Scholar
  30. 24.
    Bailey, K.: Biochem. J. 43, 271 (1948).Google Scholar
  31. Tsao, T. C., K. Bailey and G. S. Adair: Biochem. J. 49, 27 (1951).Google Scholar
  32. 25.
    Hodge, A. J., A. G. Szent-Györgyi and Carolyn Cohen: Paper in preparation.Google Scholar
  33. 26.
    Hall, C. E., M. A. Jakijs and F. O. Schmitt: J. appl. Physics 16, 459 (1945).ADSCrossRefGoogle Scholar
  34. 27.
    Elliott, G. F., J. Hanson and J. Lowy: Nature (Lond.) 180, 1291 (1957).ADSCrossRefGoogle Scholar
  35. 28.
    Hodge, A. J.: Ph. D. Thesis, Studies on paramyosin: The in vitro Reconstitution and transformation of periodic structure. Mass. Inst. Technol. 1952.Google Scholar
  36. 29.
    Hodge, A. J. Proc. nat. Acad. Sci. (Wash.) 38, 850 (1952).CrossRefGoogle Scholar
  37. 30.
    Kay, C. M.: Biochim. biophys. Acta 27, 469 (1958).Google Scholar
  38. 31.
    Bailey, K.: Pubbl. Staz. Zool. Napoli 29, 96 (1957).Google Scholar
  39. 32.
    Bailey, K. Biochim. biophys. Acta 26, 612 (1957).Google Scholar
  40. 33.
    Kominz, D. R., F. Saad and K. Laki: Chemical characteristics of annelid, mollusc, and arthropod tropomyosins. Proc. Conf. on Chemistry of Muscular Contraction. Tokyo: Igakushoin, Ltd. 1957. Kominz, D. R., F. Saad and K. Laki: Nature (Lond.) 179, 206 (1957).Google Scholar
  41. 34.
    Locker, R. H., and F. O. Schmitt: J. biochem. biophys. Cytol. 3, 889 (1957).CrossRefGoogle Scholar
  42. 35.
    Hanson, J., J. Lowy, H. Huxley, K.Bailey, C. M. K.y and J. C. Ruegg: Nature (Loud.) 180, 1134 (1957).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • Alan J. Hodge
    • 1
  1. 1.Department of BiologyMassachusetts Institute of TechnologyCambridge 39USA

Personalised recommendations