Verhandlungen pp 820-835 | Cite as

Beobachtungen der atomaren Stuktur von Metalloberflächen im Feldionenmikroskop

  • Erwin W. Müller


The working conditions of the helium operated low temperature field ion microscope are described. The resolution of atom chains of 2,74 A spacing, and of a two dimensional net of 2,77 A spacing is shown in photographs, while a visual observation of a net plane resolution of 2,35 A is reported. Field evaporation at low temperatures produces perfectly clean and regularly built surfaces, which will not be contaminated during observation by even one atom, in spite of the use of a ground joint for easy sample replacement. The rate of field evaporation limits the application to about 8 elements for best image quality, and one other dozen of metals with limited image stability. Field evaporation of the refractory metals yields doubly charged ions. A number of high resolution photographs of wolfram, rhenium, iridium, platinum and nickel crystals are shown, exhibiting atomic details of stacking faults, dislocations, subgrain boundaries and slip bands. The effect of recovery of platinum and iridium crystals is demonstrated. Fatigue experiments are made with platinum crystals, exposing them during the observation in the microscope to a cycling stress of 1000 kg/mm2. Operation of the cycling stress at audio frequencies let to the discovery of resonance vibrations. These seem to be characteristic for the metal, and they may represent energy exchange frequencies between high frequency lattice vibration modes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Müller, E. W.: Z. Physik 106, 541 (1937); 108, 668 (1938).CrossRefGoogle Scholar
  2. 2.
    GooD, jr. R. H., and E. W. Müller: Feldemission, Handbuch der Physik. Bd. XXI, 176, 1956.Google Scholar
  3. 3.
    Müller, E. W.: Naturwissenschaften 29, 533 (1941).ADSCrossRefGoogle Scholar
  4. 4.
    Z. Physik 131, 136 (1951); Ergebn. exakt. Naturwiss. 27, 290 (1953).Google Scholar
  5. 5.
    Physic. Rev. 102, 618 (1956).CrossRefGoogle Scholar
  6. 6.
    J. appl. Physics 27, 474 (1956); Z. Naturforsch. 11a, 88 (1956).Google Scholar
  7. 7.
    J. appl. Physics 28, 1 (1957).Google Scholar
  8. 8.
    Ann. Physik 6. Folge 20, 315 (1957).Google Scholar
  9. 9.
    Z. Elektrochem. 61, 43 (1957).Google Scholar
  10. 10.
    Drechsler, M., and G. Pankow: Proc. int. Conf. Electron Microscopy. p. 405 London 1954.Google Scholar
  11. 11.
    Rose, D. J.: J. appl. Physics 27, 215 (1956).ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Müller, E. W.: Field Emission Symposium, Chicago (June 1958).Google Scholar
  13. 13.
    —and J. F. Mulson: Bull. Amer. phys. Soc. 3, 69 (Jan. 1958).Google Scholar
  14. 14.
    Drechsler, M.: Z. Elektrochem. 61, 48 (1957).Google Scholar
  15. 15.
    Müller, E. W.: Acta metallurgica 6, 620 (1958).CrossRefGoogle Scholar
  16. 16.
    Lang, A. R.: J. appl. Physics 28, 497 (1957).ADSCrossRefGoogle Scholar
  17. 17.
    Müller, E. W.: Bull. Amer. phys. Soc. 3, 265 (1958).Google Scholar
  18. 18.
    Fitzgerald, E. R.: Physics Rev. 108, 690 (1957).ADSCrossRefGoogle Scholar
  19. 19.
    Fermi, E., J. Pasta and S. Ulam: Los Alamos Sci. Lab. Rep. LA1940 (1955).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • Erwin W. Müller
    • 1
  1. 1.Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations