Advertisement

Flüssiges Helium als Quantenflüssigkeit

  • K. Dransfeld
Conference paper
Part of the Verhandlungen der Gesellschaft Deutscher Naturforscher und Ärzte book series (NATURFORSCHER, volume 106)

Abstract

Liquid 4He does not solidify on cooling but exhibits a very low density and loses its viscosity below a critical temperature. If the liquid is set in rotation, quantized vortex lines are created. This survey sets out to show that these phenomena can only be understood by taking into account the wave nature of matter and treating the liquid quantum mechanically.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Als Einführung in die Physik des flüssigen Heliums seien z.B. empfohlen: a) Atkins, K. R.: Liquid Helium. Cambridge: Univ. Press 1959;Google Scholar
  2. [1a]
    b) Lane, C. T.: Superfluid Physics. McGraw Hill 1962;Google Scholar
  3. [1b]
    c) Wilks, J.: Liquid and Solid Helium. Oxford: Clarendon Press 1967;Google Scholar
  4. [1c]
    d) Keller, W. E.: Helium-3 and Helium-4. New York: Plenum Press 1969.CrossRefGoogle Scholar
  5. [2]
    Levine, J.L., Sanders, T. M.: Phys. Rev. 154, 138 (1967);CrossRefGoogle Scholar
  6. [2a]
    Pratt, W. P., Zimmermann, W.: ibid. 177, 412 (1969);CrossRefGoogle Scholar
  7. [2b]
    Cohen, M. H., Jortner, J.: ibid. 180, 238 (1969);CrossRefGoogle Scholar
  8. [2c]
    Springett, B. E., Jortner, J., Cohen, M. H.: J. Chem. Phys. 48, 2720 (1968);CrossRefGoogle Scholar
  9. [2d]
    Ferrell, R. A.: Phys. Rev. 108, 167 (1957);CrossRefGoogle Scholar
  10. [2e]
    Triftshäuser, W., et al.: Proc. 11th Internat. Conf. Low Temp. Physics. J. F. Allen, D. M. Finlayson, D. M. McCall, eds. Univ. of St. Andrews 1968;Google Scholar
  11. [2f]
    Briscoe, C.V., Choi, S. I., Stewart, A. T.: Phys. Rev. Lett. 20, 493 (1968).CrossRefGoogle Scholar
  12. [3]
    Langer, J. S., Reppy, J. D., in: Progr. Low Temp. Phys. VI. North Holland Publ. 1970.Google Scholar
  13. [4]
    Henkel, R. P., Smith, E. N., Reppy, J. D.: Phys. Rev. Lett. 23, 1276 (1969).CrossRefGoogle Scholar
  14. [5]
    Winterling, G., Heinicke, W., Dransfeld, K.: Phys. Rev. 185, 285 (1969).CrossRefGoogle Scholar
  15. [6]
    Grimm, H., Dransfeld, K.: Z. Naturforsch. 22a, 1629 (1967).Google Scholar
  16. [7]
    Heinicke, W., Winterling, G., Dransfeld, K.: Phys. Rev. Lett. 22, 170 (1969).CrossRefGoogle Scholar
  17. [8]
    St. Peters, R. L., Greytak, T. J., Benedek, G. B.: Optics Commun. 1, 412 (1970).CrossRefGoogle Scholar
  18. [9]
    Greytak, T. J., Yan, J.: Phys. Rev. Lett. 22, 987 (1969).CrossRefGoogle Scholar
  19. [10]
    Andronikashvili, E. L., Mamaladze, Yu. G., in: Progr. Low Temp. Phys. V. North Holland Publ. 1967; Pobell, F.: Physik in unserer Zeit 4, 108 (1970).CrossRefGoogle Scholar
  20. [11]
    Donnelly, R. L.: Experimental Superfluidity. The University of Chicago Press 1967.Google Scholar
  21. [12]
    Stauffen, D., Fetter, A. L.: Phys. Rev. 168, 156 (1968);CrossRefGoogle Scholar
  22. [12a]
    Stauffer, D., Pobell, F., Schoepe, W.: Phys. Lett. 26a, 465 (1968).CrossRefGoogle Scholar
  23. [13]
    Schoepe, W., Dransfeld, K.: ibid. 29a, 165 (1969).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1970

Authors and Affiliations

  • K. Dransfeld
    • 1
  1. 1.Physik-DepartmentTechnischen Universität MünchenDeutschland

Personalised recommendations