Advertisement

Intensity-Based 2D-3D Registration Using Normalized Gradient Fields

  • Annkristin LangeEmail author
  • Stefan Heldmann
Conference paper
  • 55 Downloads
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

2D-3D registration is central to image guided minimal invasive endovascular therapies such as the treatment of aneurysms. We propose a novel intensity-based 2D-3D registration method based on digitally reconstructed radiographs and the so-called Normalized Gradient Fields (NGF) as a distance measure. We evaluate our method on publicly available clinical data and compare it to five other state-of-the-art 2D-3D registration methods. The results show that our method achieves better accuracy with comparable results in terms of the number of successful registrations and robustness.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Markelj P, Tomaževič D, Likar B, et al. A review of 3D/2D registration methods for image-guided interventions. Med Image Anal. 2012;16(3):642–61.Google Scholar
  2. 2.
    Goitein M, Abrams M, Rowell D, et al. Multi-dimensional treatment planning: II. Beam’s eye-view, back projection, and projection through CT sections. Int J Radiat Oncol Biol Phys. 1983;9(6):789 – 97.Google Scholar
  3. 3.
    Russakoff DB, Rohlfing T, Mori K, et al. Fast generation of digitally reconstructed radiographs using attenuation fields with application to 2D-3D image registration. IEEE Trans Med Imaging. 2005;24(11):1441–54.Google Scholar
  4. 4.
    Otake Y, Armand M, Armiger RS, et al. IEEE Trans Med Imaging. 2011;31(4):948–62.Google Scholar
  5. 5.
    Haber E, Modersitzki J. Intensity gradient based registration and fusion of multimodal images. In: Proc MiCCAI; 2006. p. 726–33.Google Scholar
  6. 6.
    Rühaak J, Heldmann S, Kipshagen T, et al. Highly accurate fast lung CT registration. In: SPIE Medical Imaging 2013: Image Processing; 2013.Google Scholar
  7. 7.
    Rühaak J, Polzin T, Heldmann S, et al. Estimation of large motion in lung CT by integrating regularized keypoint correspondences into dense deformable registration. IEEE Trans Med Imaging. 2017;36(8):1746–57.Google Scholar
  8. 8.
    Mitrović U, Pernuš F, Špiclin Ž, et al. 3D-2D registration of cerebral angiograms: a method and evaluation on clinical images. IEEE Trans Med Imaging. 2013;32(8):1550–63.Google Scholar
  9. 9.
    Mitrović U, Likar B, Pernuš F, et al. 3D–2D registration in endovascular imageguided surgery: evaluation of state-of-the-art methods on cerebral angiograms. Int J Comput Assist Radiol Surg. 2018;13(2):193–202.Google Scholar
  10. 10.
    Van de Kraats EB, Penney GP, Tomazevic D, et al. Standardized evaluation methodology for 2-D-3-D registration. IEEE Trans Med Imaging. 2005;24(9):1177–89.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2020

Authors and Affiliations

  1. 1.Fraunhofer MEVISLübeckDeutschland

Personalised recommendations