Advertisement

Abstract: Estimation of the Principal Ischaemic Stroke Growth Directions for Predicting Tissue Outcomes

  • Christian LucasEmail author
  • Linda F. Aulmann
  • André Kemmling
  • Amir Madany Mamlouk
  • Mattias P. Heinrich
Conference paper
  • 34 Downloads
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

The estimates of traditional segmentation CNNs for the prediction of the follow-up tissue outcome in strokes are not yet accurate enough or capable of properly modeling the growth mechanisms of ischaemic stroke [1]. In our previous shape space interpolation approach [2], the prediction of the follow-up lesion shape has been bounded using core and penumbra segmentation estimates as priors. One of the challenges is to define well-suited growth constraints, as the transition from one to another shape may still result in a very unrealistic spatial evolution of the stroke.

Literatur

  1. 1.
    Winzeck S, Hakim A, McKinley R, et al. ISLES 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI. Front Neurol. 2018;9:679.Google Scholar
  2. 2.
    Lucas C, Kemmling A, Bouteldja N, et al. Learning to predict ischemic stroke growth on acute CT perfusion data by interpolating low-dimensional shape representations. Front Neurol. 2018;9:989.Google Scholar
  3. 3.
    Lucas C, Aulmann LF, Kemmling A, et al. Estimation of the principal ischaemic stroke growth directions for predicting tissue outcomes. MICCAI BrainLes. 2019;.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2020

Authors and Affiliations

  • Christian Lucas
    • 1
    Email author
  • Linda F. Aulmann
    • 2
  • André Kemmling
    • 3
  • Amir Madany Mamlouk
    • 4
  • Mattias P. Heinrich
    • 1
  1. 1.Institute of Medical InformaticsUniversity of LübeckLübeckDeutschland
  2. 2.Department of NeuroradiologyUniversity Hospital UKSHLübeckDeutschland
  3. 3.Department of NeuroradiologyWestpfalz HospitalKaiserslauternDeutschland
  4. 4.Institute for Neuro- and BioinformaticsUniversity of LübeckLübeckDeutschland

Personalised recommendations