Advertisement

Automated Segmentation of the Locus Coeruleus from Neuromelanin-Sensitive 3T MRI Using Deep Convolutional Neural Networks

  • Max Dünnwald
  • Matthew J. Betts
  • Alessandro Sciarra
  • Emrah Düzel
  • Steffen Oeltze-Jafra
Conference paper
  • 48 Downloads
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

The locus coeruleus (LC) is a small brain structure in the brainstem that may play an important role in the pathogenesis of Alzheimer’s Disease (AD) and Parkinson’s Disease (PD). The majority of studies to date have relied on using manual segmentation methods to segment the LC, which is time consuming and leads to substantial interindividual variability across raters. Automated segmentation approaches might be less error-prone leading to a higher consistency in Magnetic Resonance Imaging (MRI) contrast assessments of the LC across scans and studies. The objective of this study was to investigate whether a convolutional neural network (CNN)-based automated segmentation method allows for reliably delineating the LC in in vivo MR images. The obtained results indicate performance superior to the inter-rater agreement, i.e. approximately 70% Dice similarity coefficient (DSC).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Braak H, Tredici KD, Rüb U, et al. Staging of brain pathology related to sporadic parkinson’s disease. Neurobiol Aging. 2003;24(2):197 – 211.Google Scholar
  2. 2.
    Braak H, Thal DR, Ghebremedhin E, et al. Stages of the pathologic process in alzheimer disease: age categories from 1 to 100 years. Journal of Neuropathology & Experimental Neurology. 2011;70(11):960–969.Google Scholar
  3. 3.
    Stratmann K, Heinsen H, Korf HW, et al. Precortical phase of alzheimer’s disease (AD)-Related tau cytoskeletal pathology. Brain Pathology. 2016;26(3):371–386.Google Scholar
  4. 4.
    Betts MJ, Cardenas-Blanco A, Kanowski M, et al. In vivo MRI assessment of the human locus coeruleus along its rostrocaudal extent in young and older adults. Neuroimage. 2017;163:150 – 159.Google Scholar
  5. 5.
    Liu KY,Marijatta F, Hämmerer D, et al. Magnetic resonance imaging of the human locus coeruleus: a systematic review. Neurosci Biobehav Review. 2017;83:325 – 355.Google Scholar
  6. 6.
    Chen X, Huddleston DE, Langley J, et al. Simultaneous imaging of locus coeruleus and substantia nigra with a quantitative neuromelanin MRI approach. Magn Reson Imaging. 2014;32(10):1301 – 1306.Google Scholar
  7. 7.
    Le Berre A, Kamagata K, Otsuka Y, et al. Convolutional neural network-based segmentation can help in assessing the substantia nigra in neuromelanin MRI. Neuroradiology. 2019;61(12):1387–1395.Google Scholar
  8. 8.
    Ariz M, Abad RC, Castellanos G, et al. Dynamic atlas-based segmentation and quantification of neuromelanin-rich brainstem structures in parkinson disease. IEEE Trans Med Imaging. 2019;38(3):813–823.Google Scholar
  9. 9.
    Langley J, Huddleston DE, Liu CJ, et al. Reproducibility of locus coeruleus and substantia nigra imaging with neuromelanin sensitive MRI. Magnetic Res Mat Phys, Biol Medi. 2017;30(2):121–125.Google Scholar
  10. 10.
    García-Lorenzo D, Longo-Dos Santos C, Ewenczyk C, et al. The coeruleus/subcoeruleus complex in rapid eye movement sleep behaviour disorders in parkinson’s disease. Brain. 2013;136(7):2120–2129.Google Scholar
  11. 11.
    Olivieri P, Lagarde J, Lehericy S, et al. Early alteration of the locus coeruleus in phenotypic variants of alzheimer’s disease. Ann Clin Transl Neurol. 2019;6(7):1345–1351.Google Scholar
  12. 12.
    Rong Ye, Claire O’Callaghan, Catarina Rua, et al.. Imaging the locus coeruleus in parkinson’s disease with ultra-high 7t MRI; 2019. Website. Available from: https://ww5.aievolution.com/hbm1901/index.cfm?do=abs.viewAbsäabs=4579.
  13. 13.
    Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. Proc - MICCAI 2015. 2015; p. 234–241.Google Scholar
  14. 14.
    Ҫiҫek Ö, Abdulkadir A, Lienkamp SS, et al. 3D u-net: learning dense volumetric segmentation from sparse annotation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. 2016; p. 424–432.Google Scholar
  15. 15.
    Milletari F, Navab N, Ahmadi S. V-Net: fully convolutional neural networks for volumetric medical image segmentation. CoRR. 2016;abs/1606.04797. Available from: http://arxiv.org/abs/1606.04797.
  16. 16.
    Woolrich MW, Jbabdi S, Patenaude B, et al. Bayesian analysis of neuroimaging data in FSL. Neuroimage. 2009;45(1, Supplement 1):S173 – S186.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2020

Authors and Affiliations

  • Max Dünnwald
    • 1
    • 2
  • Matthew J. Betts
    • 3
    • 4
  • Alessandro Sciarra
    • 1
  • Emrah Düzel
    • 3
    • 4
    • 5
  • Steffen Oeltze-Jafra
    • 1
    • 6
  1. 1.Department of NeurologyOtto-von-Guericke University Magdeburg (OVGU)MagdeburgDeutschland
  2. 2.Faculty of Computer ScienceOVGUMagdeburgDeutschland
  3. 3.German Center for Neurodegenerative Diseases (DZNE)MagdeburgDeutschland
  4. 4.Institute of Cognitive Neurology and Dementia ResearchOVGUMagdeburgDeutschland
  5. 5.Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
  6. 6.Center for Behavioral Brain Sciences (CBBS)OVGUMagdeburgDeutschland

Personalised recommendations