Advertisement

Erweiterung des Betriebsbereiches durch aktive Stabilisierungsmaßnahmen

  • Franz Joos
Chapter
  • 13 Downloads

Zusammenfassung

Der Betriebspunkt eines Verdichters wird im Allgemeinen mit einem sicheren Abstand zur Pumpgrenze gelegt unter Berücksichtigung, dass Verschmutzung und Alterung, Regelabweichungen, transiente und thermische Einflüsse sowie Störungen am Einlass den Pumpgrenzenabstand deutlich reduzieren können. Dies erfordert in der Regel den Betrieb des Verdichters außerhalb des optimalen Wirkungsgrades mit erhöhter Antriebsleistung und erhöhter Verdichteraustrittstemperatur. Um den Pumpgrenzenabstand von Verdichtern oder Fans während des Betriebs möglichst gering zu halten, können Maßnahmen getroffen werden, wie beispielsweise Abblasen oder Eindüsen von Hilfsluft in die energiearme Grenzschicht. Derartige Maßnahmen reduzieren in der Regel den Wirkungsgrad, so dass ihr Einsatz ausschließlich unter kritischen Bedingungen von Vorteil wäre. Dies erfordert die zuverlässige Messung und das rechtzeitige Erkennen der Verdichterinstabilitäten und deren Vorläufer.

Literatur

  1. 1.
    Epstein AH, Efowcs Williams JE, Greitzer EM (1986) Active suppression of aerodynamic instabilites in turbomachines. AIAA Paper No. 86-1994Google Scholar
  2. 2.
    Camp TR, Day IJ (1998) A study of spike and model stall phenomena in a low-speed axial compressor. ASME J Turbomach 120(3):393–401CrossRefGoogle Scholar
  3. 3.
    Hoying DA, Tan CS, Greitzer EM (1998) Role of blade passage flow structures in axial compressor rotating stall inception. In: Proceedings of ASME 1998 international gas turbine and aeroengine congress and exhibition, Bd 1: turbomachinery, paper 98-GT-588, Stockholm, Sweden, 2–5 JuneGoogle Scholar
  4. 4.
    Gannon AJ, Hobson GV, Shreeve RP, Villescas IJ (2006) Experimental investigation during stall and surge in transonic fan stage and rotor-only configuration. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: turbomachinery, parts A and B, paper GT2006-90925, Barcelona, Spain, 8–11 MayGoogle Scholar
  5. 5.
    Day IJ, Breuer T, Escuret J, Wilson A (1999) Stall inception and the prospects for active control in four high speed compressors. ASME J Turbomach 121(1):18–27CrossRefGoogle Scholar
  6. 6.
    Cameron JD, Morris SC (2007) Spatial correlation based stall inception analysis. In: Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, paper GT2007-28268, Montreal, Canada, 14–17 MayGoogle Scholar
  7. 7.
    Cameron JD (2007) Stall inception in an axial compressor. PhD thesis, University of Notre DameGoogle Scholar
  8. 8.
    Day IJ (1993) Active suppression of rotating stall and surge in axial compressors. ASME J Turbomach 115(1):40–47CrossRefGoogle Scholar
  9. 9.
    Garnier VH, Epstein AH, Greitzer EM (1992) Rotating wavesas a stall inception indication in axial compressors. J Turbomach 113(2):290–301CrossRefGoogle Scholar
  10. 10.
    Breuer TH, Servaty S (1998) A study of spike and modal stall phenomena in a low-speed axial compressor. ASME J Turbomach 120(3):393–401CrossRefGoogle Scholar
  11. 11.
    Hoenen H, Arnold T (2003) Development of a surge prediction system for multi stage axial compressors. In: Proceedings of the international gas turbine congress 2003, paper no. TS-040, Tokyo, 2–7 NovemberGoogle Scholar
  12. 12.
    Scheidler SG (2005) Untersuchung der Systemaspekte stabilitätsverbessernder Maßnahmen in Gasturbinen. Dissertation, Universität der Bundeswehr MünchenGoogle Scholar
  13. 13.
    McDougall N, Cumpsty N, Hynes T (1990) Stall inception in axial compressors. ASME J Turbomach 112(1):116–125CrossRefGoogle Scholar
  14. 14.
    Moore FK, Greitzer EM (1986) A theory of Pos-Stall transients in axial compression systems: part I – development of equations. ASME J Gas Turbines Power 108(1):68–76CrossRefGoogle Scholar
  15. 15.
    Dhingra M, Neumeier Y, Prasad JVR, Shin HW (2003) Stall and surge precursors in axial compressors. Presented at 39th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, AIAA Paper 2003-4425, Huntsville, AlabamaGoogle Scholar
  16. 16.
    Tahara N, Nakajima T, Kurosaki M, Ohta Y, Outa E, Nikiswas T (2001) Active stall control with practicable stall prediction system using auto-correlation coefficient. In: Proceedings of the 37th joint propulsion conference and exhibit, Salt Lake City, UT, USA, 8–11 JulyGoogle Scholar
  17. 17.
    Tahara N, Kurosaki M, Ohta Y, Outa E, Nakakita T, Tsurumi Y (2004) Early stall warning technique for axial flow compressors. In: Proceedings of ASME Turbo Expo 2004: power for land, sea, and air, Bd 5: Turbo Expo 2004, parts A and B, paper GT2004-53292, Vienna, Austria, 14–17 JuneGoogle Scholar
  18. 18.
    Christensen D, Cantin P, Gutz D, Szucs PN, Wadia AR, Armor J, Dhingra M, Neumeier Y, Prasad JVR (2006) Development and demonstration of a stability management system for gas turbine engines. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: turbomachinery, parts A and B, paper GT2006-90324, Barcelona, Spain, 8–11 MayGoogle Scholar
  19. 19.
    Dhingra M, Neumeier Y, Prasad JVR, Breeze-Stringfellow A, Shin H-W, Szucs PN (2006) A stochastic model for a compressor stability measure. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 2: aircraft engine; ceramics; coal, biomass and alternative fuels; controls, diagnostics and instrumentation; environmental and regulatory affairs, paper GT2006-91182, Barcelona, Spain, 8–11 MayGoogle Scholar
  20. 20.
    Wadia AR, Armor J, Dhingra M, Neumeier Y, Prasad JVR, Christensen D, Cantin P, Gutz D, Szucs PN (2006) Development and demonstration of a stability managment system for gas turbine engines. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: turbomachinery, parts A and B, paper GT2006-90324, Barcelona, Spain, 8–11 MayGoogle Scholar
  21. 21.
    Scheidler SG, Fottner L (2005) Active stabilization of the compression system in a twin-pool turbofan engine at inlet distortion. Conference paper: presented at the 10th international symposium on transport phenomena and dynamics of rotating machinery, ISROMAC, paper ISABE2003-1083, Honolulu, Hawaii, 7–11 MarchGoogle Scholar
  22. 22.
    Tryfonidis M, Etchevers D, Paduano JD, Epstein AH, Hendicks GJ (1995) Prestall behavior of several high speed compressors. ASME J Turbomach 117(1):62–80CrossRefGoogle Scholar
  23. 23.
    Cameron JD, Bennington MA, Ross MH, Morris SC, Corke TC (2007) Stall inception in an axial compressor. In: Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, paper GT2007-28278, Montreal, Canada, 14–17 MayGoogle Scholar
  24. 24.
    Höss B, Leinhos D, Fottner L (2000) Stall inception in the compressor system of a turbofan engine. ASME J Turbomach 122(1):32–44CrossRefGoogle Scholar
  25. 25.
    Inoue M, Kuroumaru M, Yoshida S, Furukawa M (2002) Short and long length-scale disturbances leading to rotating stall in an axial compressor stage with different stator/rotor gaps. ASME J Turbomach 124(3):376–384CrossRefGoogle Scholar
  26. 26.
    Lin F, Chen J, Li M (2004) Wavelet analysis of rotor-tip disturbances in an axial-flow compressor. J Propulsion Power 20(2):319–334CrossRefGoogle Scholar
  27. 27.
    Epstein A, Williams J, Greitzer E (1989) Active suppression of aerodynamic intabilities in turbomachines. J Propulsion 5(2):204–211CrossRefGoogle Scholar
  28. 28.
    Paduano JD, Epstein A, Valavani L, Longley JP, Greitzer EM, Guenette GR (1993) Active control of rotating stall in a low speed axial compressor rotor. ASME J Turbomach 115(1):48–56CrossRefGoogle Scholar
  29. 29.
    Tweedt DL, Okishi TH, Hathaway MD (1986) Stator endwall leading-edge sweep and hub shroud influence on compressor performance. ASME J Turbomach 108(2):224–232CrossRefGoogle Scholar
  30. 30.
    Weigl HJ, Paduano JD, Frechette LG, Epstein AH, Greitzer EM, Bright M, Strazisar AJ (1998) Active stabilization of rotating stall and surge in a transonic single stage axial compressor. ASME J Turbomach 120(4):625–636CrossRefGoogle Scholar
  31. 31.
    Spakovszky ZS, Weigl HJ, Paduano JD, van Schalwyk CM, Suder KL, Bright MM (1999) Rotating stall control in a high-speed stage with inlet distortion: part I – radial distortion. ASME J Turbomach 121(3):510–516CrossRefGoogle Scholar
  32. 32.
    Spakovszky ZS, van Schalwyk CM, Weigl HJ, Paduano JD, Suder KL, Bright MM (1999) Rotating stall control in a high speed stage with inlet distortion: part II – circumferential distortion. ASME J Turbomach 121(3):517–524CrossRefGoogle Scholar
  33. 33.
    Suder KL, Hathaway MD, Thorp SA, Strazisar AJ, Bright MM (2001) Compressor stability enhancement using discrete tip injection. ASME J Turbomach 123(1):14–23CrossRefGoogle Scholar
  34. 34.
    Freeman C, Wilson AG, Ivor J, Day IJ, Swinbanks MA (1998) Experiments in active control of stall on an aeroengine gas turbine. ASME J Turbomach 120(4):637–647CrossRefGoogle Scholar
  35. 35.
    Bindl S (2010) Realisierung einer autarken Applikation zur Erkennung und Unterdrückung von Verdichterinstabilitäten am Turbostrahltriebwerk Larzac 04. Dissertation, Universität der Bundeswehr München.Google Scholar
  36. 36.
    Xin-Qian Z, Xiao-bo Z, Sheng Z (2004) Investigation on a type off low control to weaken unsteady separated flows by unsteady excitation in axial flow compressors. In: Proceedings of ASME Turbo Expo 2004: power for land, sea, and air, Bd 5: Turbo Expo 2004, parts A and B, paper GT2004-53167, Vienna, Austria, 14–17 JuneGoogle Scholar
  37. 37.
    Zhi-ping L, Zhi-qiang G, Yan L, Ya-jun L (2004) The experiment research on the performance of low speed axial-compressor by external acoustic excitation. In: Proceedings of ASME Turbo Expo 2004: power for land, sea, and air, Bd 5: Tturbo Expo 2004, parts A and B, paper GT2004-53183, Vienna, Austria, 14–17 JuneGoogle Scholar
  38. 38.
    Vo HD (2007) Suppression of short length-scale rotating stall inception with glow discharge actuation. In: Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, paper GT2007-27673, Montreal, Canada, 14–17 MayGoogle Scholar
  39. 39.
    Corke T, Post M (2005) Overview of plasma flow control: concepts, optimization and applications. In: Proceedings of 43rd AIAA aerospace sciences meeting and exhibit, AIAA paper 2005-563, Reno, Nevada, USA, 10–13 JanuaryGoogle Scholar
  40. 40.
    Enloe CL, McLaughlin TE, Van Dyken RD, Kachner KD, Jumper EJ, Corke T (2004) Mechanisms and responses of a single dielectric barrier plasma actuator: plasma morphology. AIAA J 42(3):589–594CrossRefGoogle Scholar
  41. 41.
    Shyy W, Jayaraman B, Andersson A (2002) Modeling of glow discharge-induced fluid dynamics. J Appl Phys 92(11):6434–6443CrossRefGoogle Scholar
  42. 42.
    Vo HD (2007) Suppression of short length-scale rotating stall inception with glow discharge actuation. In: Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, paper GT2007-27673, Montreal, Canada, 14–17 MayGoogle Scholar
  43. 43.
    Vo HD (2010) Rotating stall suppression in axial compressors with casing plasma actuation. J Propulsion Power 26(4):808–818CrossRefGoogle Scholar
  44. 44.
    Jothiprasad G, Murray AC, Essenhigh K, Bennett GA, Saddoughi S, Wadia A (2010) Control of tip clearance flow in a low speed axial compressor rotor with plasma actuation. In: Proceedings of ASME Turbo Expo 2010: power for land, sea, and air, Bd 7: turbomachinery, parts A, B, and C, paper GT2010-22345, Glasgow, UK, 14–18 JuneGoogle Scholar
  45. 45.
    Wu Y, Ma C, Tian S-M, Zhou Y-T, Li J, Li Y-H (2016) Tip leakage vortex control in a low speed axial compressor using pulsed plasma actuation. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-56795, Seoul, South Korea, 13–17 JuneGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2020

Authors and Affiliations

  • Franz Joos
    • 1
  1. 1.MünchenDeutschland

Personalised recommendations