Advertisement

Optimierungsverfahren

  • Franz Joos
Chapter
  • 49 Downloads

Zusammenfassung

In Kapitel Abschn.  14.3 wurde das grundlegende Gleichungssystem der Navier-tokes’schen Gleichungen zusammengefasst dargestellt zu

Literatur

  1. 1.
    Shang EB, Wang ZQ (1991) A perspective and effective way to improve the compressor performance. In: Proceeding of international gas turbine congress, IGTC-13, Yokohama 1991Google Scholar
  2. 2.
    Deich ME, Gubalev AB, Filippov GA, Wang ZQ (1962) A new method of profiling the guide Van Cascade of stage with small ratios diameter to length. Tepli energetika 8:42–46Google Scholar
  3. 3.
    Filippov GA, Wang ZQ (1963) The calculation of axial symmetric flow in an turbine stage with small ratio of diameter to blade length. J Moscow Power Inst 47:63–78Google Scholar
  4. 4.
    Wang ZQ, Su JX, Zhong J (1994) The effect of pressure distribution in a three-dimensional flow field on the type of curved blade. In: Proceedings of ASME 1994 international gas turbine and aeroengine congress and exposition, BD 1: turbomachinery, ASME paper 94-GT-400, Den Haag, Holland, 13–16 Juni 1994Google Scholar
  5. 5.
    Bliss DB, Hayden RP, Murry BS (1976) Design considerations for novel low source noise transonic Fan Stage. In: Proceedings of the 3rd aeroacoustics conference, paper AIAA-1976-577, Palo Alto, Kalifornien, Vereinigte Staaten von Amerika, 20–23 Juli 1976Google Scholar
  6. 6.
    Lucas RG, Woodard RP, Mackinnon MJ (1978) Acoustic evaluation of a novel swept rotor fan. In: Proceedings of the 11th fluid and plasma dynamics conference, paper AIAA-1978-1121, Seattle, Washington, Vereinigte Staaten von Amerika, 10–12 Juli 1978Google Scholar
  7. 7.
    Wennerstrom AJ, Frost GR (1976) Design of a 1500ft/sec, transonic, high-trough-flow, single-stage axial-flow compressor with low hub/tip ratio. AFARL-TR-76-59, AD-B016386Google Scholar
  8. 8.
    Frank BJ, King PI (1994) Effects of leading edge sweep on stall inception in a high-speed single-stage compressor. In: Proceedings of the 30th joint propulsion conference and exhibit, paper AIAA-1994-2696, Indianapolis, Indiana, Vereinigte Staaten von Amerika, 27–29 Juni 1994Google Scholar
  9. 9.
    Boger KM, King PI, Copenhaver WW (1993) Stall inception in single stage high-speed compressor with straight and swept leading edges. In: Proceedings of the 29th joint propulsion conference and exhibit, paper AIAA-1993-1870, Monterey, Kalifornien, Vereinigte Staaten von Amerika, 28–30 Juni 1993Google Scholar
  10. 10.
    Köller U, Mönig R, Küsters B, Schreiber H-A (2000a) Development of advanced compressor airfoils for heavy-duty gas turbines – part I: design and optimization. In: Proceedings of ASME 1999 international gas turbine and aeroengine congress and exhibition, Bd 1: aircraft engine; marine; turbomachinery; microturbines and small turbomachinery, paper 99-GT-095, Indianapolis, Indiana, Vereinigte Staaten von Amerika, 7–10 Juni 2000Google Scholar
  11. 11.
    Köller U, Mönig R, Schreiber H-A (2000b) Development of advanced compressor airfoils for heavy-duty gas turbines – part II: experimental and theoretical analysis. In: Proceedings of ASME 1999 international gas turbine and aeroengine congress and exhibition, Bd 1: aircraft engine; marine; turbomachinery; microturbines and small turbomachinery, paper 99-GT-096, Indianapolis, Indiana, Vereinigte Staaten von Amerika, 7–10 Juni 2000Google Scholar
  12. 12.
    Bueche D, Guidati G, Stollm P (2003) Automated design optimization of compressor blades for stationary large-scale turbomachinery. In: Proceedings of ASME Turbo Expo 2003, collocated with the 2003 international joint power generation conference, Bd 6: Turbo Expo 2003, parts A and B, paper GT2003-38421, Atlanta, Georgia, Vereinigte Staaten von Amerika, 16–19 Juni 2003Google Scholar
  13. 13.
    Sieverding F, Ribi B, Casey M, Meyer M (2004) Design of industrial axial compressor blade sections for optimal range and performance. ASME J Turbomach 126(2):323–331CrossRefGoogle Scholar
  14. 14.
    Keskin A, Dutta AK, Bestle D (2006) Modern compressor aerodynamic blading process using multi-objective optimization. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: turbomachinery, parts A and B, paper GT2006-90206, Barcelona, Spanien, 8–11 Mai 2006Google Scholar
  15. 15.
    Benini E (2004) Neural networks for pattern recognition. Oxford University Press, OxfordGoogle Scholar
  16. 16.
    Jang C-M, Kim K-Y (2005) Optimization of blade sweep in a transonic axial compressor rotor. JSME Int J B Fluid Thermal Eng 48(4):793–801CrossRefGoogle Scholar
  17. 17.
    Lian Y, Liou MS (2005) Aerostructural optimization of a transonic compressor rotor. J Propuls Power 22(4):880–888CrossRefGoogle Scholar
  18. 18.
    Ellbrant L, Eriksson L-F, Martensson H (2013) Balancing efficiency and stability in the design of transonic compressor stages. In: Proceedings of ASME Turbo Expo 2013: turbine technical conference and exposition, Bd 6B: turbomachinery, paper GT2013-94838, San Antonio, Texas, Vereinigte Staaten von Amerika, 3–7 Juni 2013Google Scholar
  19. 19.
    Fox RW, McDonald AT, Pritchard PJ (2004) Introduce to fluid mechanics, 6. Aufl. Wiley, HobokenGoogle Scholar
  20. 20.
    Huppertz A, Flassig PM, Swoboda M (2007) Knowledge-based 2D blade design using multi-objective aerodynamic optimisation and a neuronal network. In: Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, paper GT2007-28204, Montreal, Kanada, 14–17 Mai 2007Google Scholar
  21. 21.
    Schittkowski K (1986) NLPQL: A Fortran subroutine solving constrained nonlinear programming problems. Ann Oper Res 5(2):485–500MathSciNetCrossRefGoogle Scholar
  22. 22.
    Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, ChichesterzbMATHGoogle Scholar
  23. 23.
    Moberg L, Guidat G, Savic S (2006) Automated blade optimisation and 3D CFD analysis for an axial multistage GT compressor redesign. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: turbomachinery, parts A and B, paper GT2006-90747, Barcelona, Spanien, 8–11 Mai 2006Google Scholar
  24. 24.
    Box GEP, Draper NR (2007) Response surfaces, mixtures, and ridge analyses. Wiley, Hoboken. ISBN 9780470072769CrossRefGoogle Scholar
  25. 25.
    Kuzmenko ML, Shmotin YN, Egorov IN, Federchin KS (2007) Optimization of the gas turbine engine parts using methods of numerical simulation. In: Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, Montreal, Kanada, 14–17 Mai 2007Google Scholar
  26. 26.
    Siddappaji K, Turner MG, Merchant A (2012) General capability of parametric 3d blade design tool for turbomachinery. In: ASME Turbo Expo 2012: turbine technical conference and exposition, Bd 8: Turbomachinery, parts A, B, and C, paper GT2012-69756, Kopenhagen, Dänemark, 11–15 Juni 2012Google Scholar
  27. 27.
    Nemnen AF, Turner MG, Siddappaji K, Galbraith M (2014) A smooth curvature-defined meanline section option for a general turbomachinery geometry generator. In: ASME Turbo Expo 2014: turbine technical conference and exposition, Bd 2B: turbomachinery, paper GT2014-26363, Düsseldorf, Deutschland, 16–20 Juni 2014Google Scholar
  28. 28.
    Wu JZ, Ma HY, Zhou MD (2006) Vorticity and vortex dynamics. Springer, New YorkCrossRefGoogle Scholar
  29. 29.
    Wu JZ, Wu H, Li QS (2009) Boundary vorticity flux and engineering flow management. Adv Appl Math Mech 1(3):353–366MathSciNetGoogle Scholar
  30. 30.
    Wu J, Lu X, Yang Y, Zhang R (2010) Vorticity dynamics in complex flow diagnosis and management. In: Proceedings of the 13th Asian congress of fluid mechanics, Dhaka, Bangladesch, 17–21 Dezember 2010Google Scholar
  31. 31.
    Yang Y, Wu H, Li Q, Zhou S, Wu J (2008) Vorticity dynamics in axial compressor flow diagnosis and design. ASME J Fluid Eng 130(4):041102-1-9CrossRefGoogle Scholar
  32. 32.
    Li Q, Wu H, Guo M, Wu J (2010) Vorticity dynamics in axial compressor flow diagnosis and design – part II: methodology and application of boundary vorticity flux. ASME J Fluid Eng 132(1):011102-1-12Google Scholar
  33. 33.
    Chen H, Turbner MG, Siddapaji K, Mahmood SMH (2016) Vorticity dynamics based flow diagnosis for a 1,5-stage high pressure compressor with an optimized transonic rotor. In: Proceedings ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-56682, Seoul, Südkorea, 13–17 Juni 2016Google Scholar
  34. 34.
    Zangeneh M (1991) A compressible three-dimensional design method for radial and mixed flow turbomachinery blades. Int J Numer Methods Fluids 13:599–624CrossRefGoogle Scholar
  35. 35.
    Zangeneh M, Goto A, Harada H (1987) On the design criteria for suppression of secondary flows in centrifugal and mixed flow impellers. In: ASME 1997 international gas turbine and aeroengine congress and exhibition, Bd 1: aircraft engine; marine; turbomachinery; microturbines and small turbomachinery, paper 97-GT-393, Orlando, Florida, Vereinigte Staaten von Amerika, 2–5 Juni 1987Google Scholar
  36. 36.
    Ashihara K, Goto A (1999) Improvements of pump suction performance using 3D inverse design method. In: Proceedings of the 3rd ASME/JSME joint fluids engineering conference, paper FEDSM99-6846, San Francisco, Kalifornien, 18–23 Juli 1999Google Scholar
  37. 37.
    Leonard O, Braembussche RA (1992) Design method for subsonic and transonic cascade with prescribed Mach number distribution. ASME J Turbomach 114(3):553–560CrossRefGoogle Scholar
  38. 38.
    Dang TQ, Nerurkar AC, Reddy DR (1997) Design modification of rotor 67 by 3D inverse method – inviscid-flow limit. In: Proceedings of ASME 1997 international gas turbine and aeroengine congress and exhibition, Bd 1: aircraft engine; marine; turbomachinery; microturbines and small turbomachinery, paper 97-GT-484, Orlando, Florida, Vereinigte Staaten von Amerika, 2–5 Juni 1997Google Scholar
  39. 39.
    Choo BMF, Zangeneh M (2002) Development of an (adaptive) unstructured 2-D inverse design method for turbomachinery blades. In: Proceedings of ASME Turbo Expo 2002: power for land, sea, and air, Bd 5: Turbo Expo 2002, parts A and B, paper GT2002-30620, Amsterdam, Holland, 3–6 Juni 2002Google Scholar
  40. 40.
    Dang T (1995) Inverse method for turbomachine blades using shock-capturing techniques. In: Proceedings of the 31st joint propulsion conference and exhibit, AIAA paper 95-2465, San Diego, Kalifornien, Vereinigte Staaten von Amerika, 10–12 Juli 1995Google Scholar
  41. 41.
    Demeulenaere A, Leonard O, Braembussche R (1997) A two-dimensional Navier-Stokes inverse solver for compressor and turbine blade design. Proc Inst Mech Eng A 211(Part A):299–307CrossRefGoogle Scholar
  42. 42.
    Tiow W, Zangeneh M (1998) A viscous transonic inverse design method for turbomachinery blades, part I: 2D cascades. In: Proceedings of the ASME 1998 international gas turbine and aeroengine congress and exhibition, Bd 1: turbomachinery, paper 98-GT-125, Stockholm, Schweden, 2–5 Juni 1998Google Scholar
  43. 43.
    Tiow W, Yiu C, Zangeneh M (2002) Application of simulated annealing to inverse design of transonic turbomachinery Cascades. Proc Inst Mech Eng A 216(1):59–73(15)CrossRefGoogle Scholar
  44. 44.
    Demeulenaere A, Leonard O, Van den Braembussche R (1998) Three-dimensional inverse method for turbomachinery blading design. ASME J Turbomach 120(2):247–255CrossRefGoogle Scholar
  45. 45.
    Watanabe H, Zangeneh M (2003) Design of the blade geometry of swept transonic fans by 3D inverse design. In: Proceedings of ASME Turbo Expo 2003, collocated with the 2003 international joint power generation conference, Bd 6: Turbo Expo 2003, parts A and B, paper GT2003-38770, Atlanta, Georgia, Vereinigte Staaten von Amerika, 16–19 Juni 2003Google Scholar
  46. 46.
    Medd AJ, Dang TQ, Larosiliere LM (2003) 3D inverse design loading strategy for transonic axial compressor blading. In: Proceedings of ASME Turbo Expo 2003, collocated with the 2003 international joint power generation conference, Bd 6: Turbo Expo 2003, parts A and B, paper GT2003-38501, Atlanta, Georgia, Vereinigte Staaten von Amerika, 16–19 Juni 2003Google Scholar
  47. 47.
    Hobbs DE, Weingold HD (1984) Development of controlled diffusion airfoils for multistage compressor application. ASME J Eng Gas Turbine Power 106(2):271–278CrossRefGoogle Scholar
  48. 48.
    Steiner W, Eisenberg B, Starken H (1991) Design and testing of a controlled diffusion airfoil cascade for industrial compressor application. ASME J Turbomach 113(4):583–590CrossRefGoogle Scholar
  49. 49.
    Dunker R, Rechter H, Starken H, Weyer H (1984) Redesign and performance of a transonic axial compressor stator and equivalent plane cascades with subsonic controlled diffusion blades. ASME J Eng Gas Turbine Power 106(2):279–287CrossRefGoogle Scholar
  50. 50.
    Sonoda T, Yamaguchi Y, Arima T, Olhofer M, Sendhoff B, Schreiber H-A (2003) Advanced high tuning compressor airfoils for low Reynolds number condition – part I: design and optimization. ASME J Turbomach 126(3):350–359CrossRefGoogle Scholar
  51. 51.
    Schreiber H-A, Steinert W, Sonoda T, Arima T (2004) Advanced high turning compressor airfoils for low Reynolds number condition – part II: experimental and numerical analysis. ASME J Turbomach 126(4):482–492CrossRefGoogle Scholar
  52. 52.
    Hu P, Choo B, Zangeneh M, Rahmati M (2006) On design of transonic fan rotors by 3D inverse design method. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: turbomachinery, parts A and B, paper GT2006-91173, Barcelona, Spanien, 8–11 Mai 2006Google Scholar
  53. 53.
    Mileshin VI, Orekhov IK, Shchipin SK, Startsev AN (2007) 3D inverse design of transonic Fan rotors efficient for a wide range of RPM. In: Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, paper GT2007-27817, Montreal, Kanada, 14–17 Mai 2007Google Scholar
  54. 54.
    Mileshin VI, Orekhov IK, Shchipin SK, Startsev AN (2004) New 3D inverse Navier-Stokes based method used to design turbomachinery blade rows. HAT-FED04, Charlotte North Carolina, Vereinigte Staaten von Amerika, HT-FED-2004-56436, 11–15 Juli 2004Google Scholar
  55. 55.
    Ahmed R, Lawerenz M (2003) On the aeromechanical-design of multistage axial compressors using parallel optimisation algorithms. In: Proceedings of the 16th symposium on airbreathing engines, Number ISABE 2003-17, 31.8.–5.9. 2003, Ohio, ClevelandGoogle Scholar
  56. 56.
    Rai M (2004) Multiple-objective optimization with differential evolution and neural networks. NASA Ames Research Centre, VKI Lecture SeriesGoogle Scholar
  57. 57.
    Giannakoglou KC (2004) Neural network assisted evolutionary algorithms in aeronautics and turbomachinery. VKI LecturesGoogle Scholar
  58. 58.
    Faller W, Schreck S (1996) Neural networks: applications and opportunities in aeronautics. Prog Aerosp Sci 32(5):433–456CrossRefGoogle Scholar
  59. 59.
    Van den Braembussche RA (2004) Fast multidisciplinary optimisation of turbomachinery components. VKI Lecture SeriesGoogle Scholar
  60. 60.
    Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4(4):409–435MathSciNetCrossRefGoogle Scholar
  61. 61.
    Welch WJ, Mitchell TJ, Wynn HP (1992) Screening predicting and computer experiments. Technometrics 34(1):15–25CrossRefGoogle Scholar
  62. 62.
    Voss C, Aulich M, Kaplan B, Nicke E (2006) Automated multi-objective optimization in axial compressor blade design. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: turbomachinery, parts A and B, paper GT2006-90420, Barcelona, Spanien, 8–11 Mai 2006Google Scholar
  63. 63.
    Dorfner C, Nicke E, Voss C (2007) Axis-asymetric profiled endwall design using multi-objective optimization linked with 3D RANS-flow-simulations. In: Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, GT2007-27268, Montreal, Kanada, 14–17 Mai 2007Google Scholar
  64. 64.
    Fausett L (1994) Fundamentals of neural networks: architectures, algorithms and applications. Prentice Hall, Englewood CliffszbMATHGoogle Scholar
  65. 65.
    Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, OxfordzbMATHGoogle Scholar
  66. 66.
    Ripley BD, Pattern BD (1996) Recognition and neural networks. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  67. 67.
    Lo CF, Shi GZ (1991) Neural network bases expert system for compressor stall monitoring. In: Proceedings of 27th joint propulsion conference, AIAA paper 91-250000, Sacramento, Kalifornien, Vereinigte Staaten von Amerika, 24–26 Juni 1991Google Scholar
  68. 68.
    Dornberger R, Buece D, Stoll P (2000) Multidisciplinary optimization in turbomachinery design. In: Proceedings of European congress on computational methods in applied sciences and engineering ECCOMAS 2000, Barcelona, Spanien, September 11–14 2000Google Scholar
  69. 69.
    Pierret S, Demeulenaere A, Gouverner B, Hirsch, Ch (2000) Designing turbomachinery blades with the function approximation concept and the Navier-Stokes equations. In: Proceedings of the 8th AIAA/NASA/USAF/ISSMO symposium on MDO, Long Beach, Kalifornien, Vereinigte Staaten von Amerika, 6–8 September 2000Google Scholar
  70. 70.
    Vadivelan C, Chandar DDJ (2005) Transonic Airfoil design using artificial neural networks. In: Proceedings of the 8th annual CFD symposium, Bangalore, 2005Google Scholar
  71. 71.
    Duch W, Jankowski N (2001) Transfer functions: hidden possibilities for better neural networks. In Proceedings of the 9th European symposium on artificial neural networks, Brügge, Belgien, S 81–94, 2001Google Scholar
  72. 72.
    Aulich M, Siller U (2011) High dimensional constrained multiobjective optimization of a fan stage. In: Proceedings of ASME 2011 Turbo Expo: turbine technical conference and exposition, Bd 7: turbomachinery, parts A, B, and C, paper GT2011-45618, Vancouver, Kanada, 6–10 Juni 2011Google Scholar
  73. 73.
    Voß C, Aulich M, Raitor T (2014) Meta-model assisted aeromechanical optimization of a transonic centrifugal compressor. In: Proceedings of the 15th international symposium on transport phenomena and dynamics of rotating machinery, ISROMAC-15, Honolulu, Hawaii, 24–28 Februar 2014Google Scholar
  74. 74.
    Goinis G, Nicke E (2016) Optimizing surge margin and efficiency of a transonic compressor. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-57896, Seoul, Südkorea, 13–17 Juni 2016Google Scholar
  75. 75.
    Heinichen F, Gümmer V, Plas A, Schiffer HP (2011) Numerical investigation of the influence of non-axisymmetric hub contouring on the performance of a shrouded axial compressor stator. CEAS Aeronaut J 2(1):89–98CrossRefGoogle Scholar
  76. 76.
    Piegl L, Tiller W (1997) The NURBS book, Monographs in visual communication, 2. Aufl. Springer, BerlinGoogle Scholar
  77. 77.
    Obaida HMB, Kawase M, Rona A, Gostelow JP (2016) Some perspectives on the treatment of three-dimensional flows on axial compressor blading. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-57617, Seoul, Südkorea, 13–17 Juni 2016Google Scholar
  78. 78.
    Reutter O, Hervé S, Nicke E (2009) Automated optimization of the non-axisymmetric hub endwall of the rotor of an axial compressor. In: Proceedings of the 10th European conference on turbomachinery, Lappeenranta, Finnland, S 1–11, 2009Google Scholar
  79. 79.
    Ma Z (2011) Non-gaussian statistical models and their applications. PhD. Thesis, KTH – Royal Institute of Technology, StockholmGoogle Scholar
  80. 80.
    Devore J (2015) Probability and statistics for engineering and the sciences, 8. Aufl. Cengage Learning, Endover HampshireGoogle Scholar
  81. 81.
    Coquillart S (1990) Extended free-form deformation: a sculpturing tool for 3D geometric modeling. Comput Graph 24(4):187–196CrossRefGoogle Scholar
  82. 82.
    John A, Shahpar S, Qin N (2016) Alleviation of shock-wave effects on a highly loaded axial compressor through novel blade shaping. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-57550, Seoul, Südkorea, 13–17 Juni 2016Google Scholar
  83. 83.
    Ginder R, Calvert W (1987) The Design of an Advanced Civil Fan Rotor. ASME J Turbomach 109(3):340–345CrossRefGoogle Scholar
  84. 84.
    Dunham J (1998) CFD validation for propulsion system components. AGARD advisory report 355, Neuilly-Sur-Seine, FranceGoogle Scholar
  85. 85.
    Chima RV (2009) SWIFT code assessment for two similar transonic. In: Proceedings of the 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Orlando, Florida, Vereinigte Staaten von Amerika, 5–8 Januar 2009Google Scholar
  86. 86.
    Shahpar S (2005) SOPHY: an integrated CFD based automatic design optimization system. In: Proceedings of the international symposium on air breathing engines (ISABE), ISABE-2005-1086 München, Deutschland, 4–9 September 2005Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2020

Authors and Affiliations

  • Franz Joos
    • 1
  1. 1.MünchenDeutschland

Personalised recommendations