Advertisement

Numerische Feldverfahren, Navier-Stokes-Verfahren

  • Franz Joos
Chapter
  • 15 Downloads

Zusammenfassung

Die Schaufelgitter, die als Zylinderschnitte durch Axialmaschinen aufzufassen sind, sollten so konzipiert sein, dass sie die gewünschten Strömungsumlenkungen optimal erreichen. Ihre Geometrie ist entsprechend zu gestalten. Da die Strömungsumlenkung durch Druckkräfte über die Schaufeln bewirkt wird, ist es naheliegend, aus vorgegeben Drücken bzw. Druckverteilungen ein Schaufelprofil auszurechnen (direkte Methode, inverses Verfahren). Für diese Berechnungen müssen jedoch die Bilanzgleichungen nach ihren Randbedingungen, die ja die Berandungen definieren, aufgelöst werden. Dieser Weg führt aber neben mathematischen Problemen häufig zu konstruktiv nicht realisierbaren Konturen. Deshalb löst man die Aufgabe meist nach dem umgekehrten Verfahren (indirekte Methode). Man gibt eine Profilkontur vor und prüft nach, ob sie günstig genug ist. Wenn die Anforderungen nicht gut genug erfüllt werden, wird die Kontur geändert und nochmals überprüft. Dieser Vorgang wird solange wiederholt, bis das Ergebnis befriedigt.

Literatur

  1. 1.
    Oertel H Jr, Laurien E (2003) Numerische Strömungsmechanik. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  2. 2.
    Schlichting H (1968) Boundary-layer theory, 6. Aufl. McGraw-Hill Book Company, New YorkzbMATHGoogle Scholar
  3. 3.
    Wu CH (1951) A general through flow theory of fluid flow with subsonic or supersonic velocities in turbomachines of arbitrary hub and casing shapes. NACA paper TN2302Google Scholar
  4. 4.
    Fröhlich J (2006) Large Eddy Simulation turbulenter Strömungen. B. G. Teubner, WiesbadenGoogle Scholar
  5. 5.
    Moin P, Mahesch K (1998) Direct numerical simulation: a tool in turbulent research. Annu Rev Fluid Mech 30:539–578CrossRefGoogle Scholar
  6. 6.
    Leonard A (1974) Energy cascade in large eddy simulations of turbulent fluid flows. Adv Geophys 18(A):237–248Google Scholar
  7. 7.
    Vasilyev O, Lund T, Moin P (1998) A general class of commutative filters for LES in complex geometries. J Comput Phys 146(1):82–104MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid at high Reynolds number. CR Acad Sci URSS 30(1941):301Google Scholar
  9. 9.
    Williams FA (1984) Combustion theory. Benjamin/Cummings, Menlo ParkGoogle Scholar
  10. 10.
    Libby PA, Williams FA (1994) Fundamental aspects and a review. In: Libby PA, Williams FA (Hrsg) Turbulent reacting flows. Academic Press, London/New York, S 1–61Google Scholar
  11. 11.
    Baldwin BS, Lomax H (1978) Thin layer – approximation and algebraic-model for separated turbulent flows. In: Proceedings of the 16th Aerospace Sciences Meeting, AIAA paper 78-257, Huntsville, January 16–18Google Scholar
  12. 12.
    Prandtl L (1945) Über ein neues Formelsystem für die ausgebildete Turbulenz. Akad Wiss Göttingen, Math Phys Kl:6–19Google Scholar
  13. 13.
    Spalart PR, Allmaras SP (1992) A one-equation turbulence model for aerodynamic flows. In: Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, AIAA paper 92-0439, Reno, January 6–9.Google Scholar
  14. 14.
    Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3(2):269–289CrossRefGoogle Scholar
  15. 15.
    Wilcox DC (1998) Turbulence modelling for CFD, 2nd. Aufl. DCW Industries, Inc., La CanadaGoogle Scholar
  16. 16.
    Menter FR (1992) Improved two-equation k-ω turbulence models for aerodynamic flows. NASA technical memorandum 103975, NASA Ames Research CenterGoogle Scholar
  17. 17.
    Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering application. AIAA J 32(8):1598–1605CrossRefGoogle Scholar
  18. 18.
    Menter FR, Kuntz M, Langtry R (2003) Ten years of industrial experience with the SST turbulence model. In: Hanjalic K, Nagano Y, Tummers M (Hrsg) Turbulence, heat and mass transfer, 4. Aufl. Begell House, Inc., New York, S 625–632Google Scholar
  19. 19.
    Johnson DA, King LS (1984) A mathematical simple turbulence closure model for attached and separated turbulent boundary layers. AIAA J 23(11):1684–1692CrossRefGoogle Scholar
  20. 20.
    Smagorinsky J (1963) General circulation experiments with the primitive equations I. The basic experiment. Mon Weather Rev 91:99–164CrossRefGoogle Scholar
  21. 21.
    Germano M, Piomelli U, Moin P, Chabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3(7):1760–1765CrossRefGoogle Scholar
  22. 22.
    Lesieur M, Comte P, Dubieff Y, Lamballeis E, Metais O, Ossia S (1999) From two-point closures of isotropic turbulence to LES of shear flows. Flow. Flow Turbul Combust 63(1–4):247–267Google Scholar
  23. 23.
    Spalart PR, Jou WH, Strelets M, Allmaras SR (1997) Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. Advances in DNS/LES. In: Proceedings of 1st AFOSR international conference on DNS/LES, Greyden Press, Columbus H., August 4–8Google Scholar
  24. 24.
    Shur M, Spalart PR, Strelets M, Travin A (1999) Detached eddy simulation of an airfoil at high angle of attack. In: Proceedings of the 4th international symposium on engineering turbulence modeling and measurements, Corsica, May 24–26, S 669–678Google Scholar
  25. 25.
    Im HS, Zha GC (2014) Delayed detached eddy simulation of airfoil stall flows using high order schemes. ASME J Fluids Eng 136(11):111104-1CrossRefGoogle Scholar
  26. 26.
    Spalart PR, Deck S, Shur M, Squires KD (2006) A new version of detached eddy simulation, resistant to ambiguous grid densities. Theor. Comput Fluid Dyn 20:181–195CrossRefGoogle Scholar
  27. 27.
    Xia G, Medic G (2017) Hybrid RANS/LES simulation of corner stall in a linear compressor cascade. In: Proceedings of ASME Turbo Expo 2017: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2017-63454, Charlotte, June 26–30Google Scholar
  28. 28.
    Liu Y, Yan H, Lu L (2015) Investigation of corner separation in a linear compressor cascade using DDES. In: Proceedings of ASME Turbo Expo 2015: turbine technical conference and exposition, Bd 2A: turbomachinery, paper GT2015-42902, Montreal, June 15–19Google Scholar
  29. 29.
    Stiefel E (1970) Einführung in die numerische Mathematik. Teubner StuttgartGoogle Scholar
  30. 30.
    Lapidius L, Pinder GF (1982) Numerical solution of partial differential equations in science and engineering. Wiley, New York/ChichesterGoogle Scholar
  31. 31.
    Traupel W (1998) Thermische Turbomaschinen, Bd 1. Springer, Berlin/Heidelberg/New YorkzbMATHGoogle Scholar
  32. 32.
    Adamczyk, J.J. (1985) Model equation for simulation flows in multistage turbomachines. In: Proceedings of ASME 1985 international gas turbine conference and exhibit, Bd 3: heat transfer; electric power, paper 85-GT-226, Houston, March 18–21Google Scholar
  33. 33.
    Dring RP, Oates GC (1990) Throughflow theory for non-axisymmetric turbomachinery flow: part I – formulation. ASME J Turbomach 112(3):320–327CrossRefGoogle Scholar
  34. 34.
    Prasad A (2004) Calculation of the mixed-out state in turbomachine flows. In: Proceedings of ASME Turbo Expo 2004: power for land, sea, and air, Bd 5: Turbo Expo 2004, parts A and B, paper GT2004-54021, Vienna, June 14–17Google Scholar
  35. 35.
    Greitzer EM, Tan CS, Graf MB (2004) Internal flow: concepts and applications. Cambridge University PressGoogle Scholar
  36. 36.
    Pianko M, Wazelt F (1983) Chapter 3: Suitable averaging techniques in non-uniform internal flows. Propulsion and energetic panel, working group 14. AGARD advisory report no 182Google Scholar
  37. 37.
    Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, CambridgezbMATHGoogle Scholar
  38. 38.
    Stein P, Pfoster C, Sell M, Galpin P, Hansen H (2015) CFD modeling of low pressure steam turbine radial diffuser flow by using a novel multiple mixing plane based coupling – simulation and validation. In: Proceedings of ASME Turbo Expo 2015: turbine technical conference and exposition, Bd 8: microturbines, turbochargers and small turbomachines; steam turbines, paper GT2015-42632, Montreal, June 15–19Google Scholar
  39. 39.
    Connell S, Braaten M, Zori L, Steed R, Hutchinson B, Cox G (2011) A comparison of advanced numerical techniques to model transient flow in turbomachinery blade rows. In: Proceedings of ASME 2011 Turbo Expo: turbine technical conference and exposition, Bd 7: turbomachinery, parts A, B, and C, paper GT2011-45820, Vancouver, June 6–10Google Scholar
  40. 40.
    Connell S, Hutchinson B, Galpin P, Campregher R, Godin P (2012) The efficient computation of transient flow in turbine blade rows using transformation methods. In: Proceedings of ASME Turbo Expo 2012: turbine technical conference and exposition, Bd 8: turbomachinery, parts A, B, and C, paper GT2012-69019, Copenhagen, June 11–15Google Scholar
  41. 41.
    Sharma G, Zori L, Connell S, Godin P (2013) Efficient computation of large pitch ratio transonic flow in a fan with inlet distortion. In: Proceedings of ASME Turbo Expo 2013: Turbine technical conference and exposition, Bd 6C: turbomachinery, GT2013-95059, San Antonio, June 3–7Google Scholar
  42. 42.
    He L (1992) Method of simulation unsteady turbomachinery flows with multiple perturbations. AIAA J 30(11):2730–2735CrossRefGoogle Scholar
  43. 43.
    Li L, He L (2002) Single-passage analysis of unsteady flows around vibrating blades of a transonic fan under inlet distortion. ASME J Turbomach 124(2):285–292CrossRefGoogle Scholar
  44. 44.
    Gerolymos G, Michon G, Neubauer J (2002) Analysis and application of chorochronic periodicity in turbomachinery rotor/stator interaction computations. J Propuls Power 18(6):1139–1152CrossRefGoogle Scholar
  45. 45.
    Ferziger JH, Peric MM (1999) Computational methods for fluid dynamics, 2. Aufl. Springer, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  46. 46.
    Peyret R, Taylor TD (1990) Computational methods for fluid flow. Springer series in computational physics. Springer, New YorkzbMATHGoogle Scholar
  47. 47.
    Telionis DP (1981) Unsteady viscous flows. Springer series in computational physics. Springer, New YorkCrossRefGoogle Scholar
  48. 48.
    Kantha LH (2004) The length scale equation in turbulence models. Nonlinear Process Geophys 11(1):83CrossRefGoogle Scholar
  49. 49.
    Alfredsson PH, Johansson AV (1988) The fluctuating wall – shear stress and the velocity field in the viscous sublayer. Phys Fluids 31:1026CrossRefGoogle Scholar
  50. 50.
    Zanoun ES, Durst F, Nagib H (2003) Evaluating the law of the wall in two-dimensional fully developed channel flows. Phys Fluids 15:3079CrossRefGoogle Scholar
  51. 51.
    Wunderwald D, Fottner L (1996) Experimental investigation of the turbulence structures in the boundary layer of an highly loaded turbine cascade. In: Proceedings of ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition, Bd 5: manufacturing materials and metallurgy; ceramics; structures and dynamics; controls, diagnostics and instrumentation; education; general, paper GT 96-GT-249, Birmingham, June 10–13Google Scholar
  52. 52.
    Ho C-H, Zohar Y (1997) The PVC technique – a method to estimate the dissipation length scale in turbulent flows. J Fluid Mech 352:135–159CrossRefGoogle Scholar
  53. 53.
    Bruna D, Turner MG (2013) A rothalpy analysis for isothermal boundary condition at casing applied tothe rotor 37 transonic axial flow compressor. In: Proceedings of ASME Turbo Expo 2013: turbine technical conference and exposition, Bd 6B: turbomachinery, paper GT2013-94595, San Antonio, June 3–7Google Scholar
  54. 54.
    Moser RD, Kim J, Mansour NN (2001) Direct numerical simulation of turbulent channels up to Ret = 590°. Phys Fluids 11(4):943CrossRefGoogle Scholar
  55. 55.
    Abe H, Karamura H, Matsuo Y (2001) Direct numerical simulation of a fully developed turbulent channel flow with respect to the reynolds number dependence. ASME J Fluids Eng 123(2):382–393CrossRefGoogle Scholar
  56. 56.
    Lozano-Durán A, Jiménez J (2014) Effect of the computational domain on direct simulations of turbulent channels up to Ret = 4200. Phys Fluids 26:011702Google Scholar
  57. 57.
    Sillero JA, Jiménez J, Moser RD (2013) One-point statistics for turbulent wall-bounded flows after Reynolds numbers up to d+ 2000. Phys Fluids 25:105102CrossRefGoogle Scholar
  58. 58.
    Inoue M, Mathis R, Marusic I, Pullin DI (2012) Inner-layer intensities for flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy-simulations. Phys Fluids 24:075102CrossRefGoogle Scholar
  59. 59.
    Alfredsson PH, Segalini A, Örlü R (2011) A new scaling for the streamwise turbulence intensity in wall bounded turbulent flows and what it tells us about the outer peak. Phys Fluids 23:041702CrossRefGoogle Scholar
  60. 60.
    Spalart PR, Rumsey CL (2007) Effective inflow conditions for turbulence models in aerodynamic calculations. AIAA J 45:2544CrossRefGoogle Scholar
  61. 61.
    Yangwei L, Xianjun Y, Baojie L (2008) Turbulence model assessment for a large-scale tip vortex in axial compressor rotor. J Propuls Power 24(1):15–25CrossRefGoogle Scholar
  62. 62.
    Byrne CEI, Holdo AE (1994) The effect of choice of inlet boundary conditions for the k-ε turbulence model. Int J Comput Fluid Dyn 3(3–4):321–327CrossRefGoogle Scholar
  63. 63.
    Bode C, Aufderheide T, Friedrichs J, Kozulovic D (2014) Improved turbulence and transition prediction for turbomachinery flows. In: Proceedings of IMECE 2014: ASME International Mechanical Engineering Congress and Exposition, paper IMECE 2014-36866, Montreal, November 14–20Google Scholar
  64. 64.
    Busse P, Krug A, Lange M, Vogeler K, Mailach, R (2016) Effects of turbulent boundary conditions on the prediction of the secondary flow field in a linear compressor cascade. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-56455, Seoul, June 13–17Google Scholar
  65. 65.
    Krug A, Busse P, Vogeler K (2014) Experimental investigation into the effects of the steady-wake-tip clearance vortex interaction in a compressor cascade. ASME J Turbomach 137(6):061006CrossRefGoogle Scholar
  66. 66.
    Hah C, Hathaway M, Katz J, Tan D (2015) Investigation of unsteady tip clearance flow in a low-speed one and half stage axial compressor with LES and PIV. In: ASME/JSME/KSME 2015 joint fluids engineering conference, Bd 1: symposia, paper AJK2015-FED, Seoul, July 26–31Google Scholar
  67. 67.
    Zlatinov MB, Tan CS, Montgomery M, Islam T, Harris M (2012) Turbine hub and shroud sealing flow loss mechanisms. ASME J Turbomach 134(6):061027CrossRefGoogle Scholar
  68. 68.
    Gan J, Im H-S, Zha, G-C (2016) Delayed detached eddy simulation of rotating stall for a full annulus transonic axial compressor stage. In: Proceedings of ASME Turbo Expo 2016: Turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-57985, Seoul, June 13–17Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2020

Authors and Affiliations

  • Franz Joos
    • 1
  1. 1.MünchenDeutschland

Personalised recommendations