Advertisement

Blockchain pp 317-335 | Cite as

Sicherung des intellektuellen Kapitals mit Knowledge Blockchains

  • Hans-Georg FillEmail author
  • Felix Härer
Chapter
  • 272 Downloads
Part of the Edition HMD book series (EHMD)

Zusammenfassung

Der Dokumentation und Externalisierung von Unternehmenswissen in Modellen kommt heute nicht nur aus organisationalen Gründen hohe Bedeutung zu. Die Absicherung der Integrität von Informationen und die verbindliche Zuordnung zu einzelnen Akteuren sind wesentlich für die Teilnahme an der digitalen Transformation über die eigenen Unternehmensgrenzen hinaus – zur Sicherung des intellektuellen Kapitals und zur Erfüllung von Dokumentationspflichten. Dieses Kapitel beschreibt ein Knowledge-Blockchain-Konzept, mit dem strukturiert in Unternehmensmodellen erfasstes Wissen durch digitale Signaturen und Integritätssicherung in der verteilten Umgebung einer Organisation abgesichert werden kann. Anhand eines Compliance-Beispiels wird thematisiert, wie Wissen mit dieser Permissioned Blockchain über die Zeit nachverfolgbar wird, verbindlich einzelnen Akteuren zugeordnet werden kann, mit Zugriffsrechten und Delegationsmechanismen erweiterbar ist und wie ein Nachweis der Existenz von Wissen zu führen ist. Das Fazit fasst die Anwendung des Konzepts vor dem Hintergrund unterschiedlicher Verteilungstechnologien zusammen.

Schlüsselwörter

Intellektuelles Kapital Compliance Wissensmanagement Konzeptuelle Modellierung Permissioned Blockchain 

Literatur

  1. Bollinger AS, Smith RD (2001) Managing organizational knowledge as a strategic asset. J Knowl Manag 5:8–18.  https://doi.org/10.1108/13673270110384365CrossRefGoogle Scholar
  2. Bork D, Fill H-G (2014) Formal aspects of enterprise modeling methods: a comparison framework. In: 47th Hawaii international conference on system sciences (HICSS-47), Waikoloa, HI, S 3400–3409Google Scholar
  3. Bork D, Fill H-G, Karagiannis D, Utz W (2018) Simulation of multi-stage industrial business processes using metamodelling building blocks with ADOxx: enterprise modelling and information systems architectures. Int J Concept Model 13:333–344.  https://doi.org/10.18417/emisa.si.hcm.25CrossRefGoogle Scholar
  4. Buterin V (2013) Ethereum: the ultimate smart contract and decentralized application platform. http://web.archive.org/web/20131228111141/http://vbuterin.com/ethereum.html. Zugegriffen am 28.06.2019
  5. Certicom Research (2010) SEC 2: recommended elliptic curve domain parameters, version 2.0. Mississauga. https://www.secg.org/sec2-v2.pdf. Zugegriffen am 28.06.2019
  6. Denzler A (2019) Granular knowledge cube: an expert finder system for knowledge carriers. Springer International Publishing, ChamCrossRefGoogle Scholar
  7. Fill H-G (2019) Applying the concept of knowledge blockchains to ontologies. In: Proceedings of the AAAI 2019 spring symposium on combining machine learning with knowledge engineering (AAAI-MAKE 2019), Stanford University, Palo Alto, CAGoogle Scholar
  8. Fill H-G, Härer F (2018) Knowledge blockchains: applying blockchain technologies to enterprise modeling. In: 51st Hawaii international conference on system sciences (HICSS-51). Waikoloa, HI, S 4045–4054Google Scholar
  9. Fill H-G, Karagiannis D (2013) On the conceptualisation of modelling methods using the ADOxx meta modelling platform: enterprise modelling and information systems architectures. Int J Concept Model 8:4–25.  https://doi.org/10.18417/emisa.8.1.1CrossRefGoogle Scholar
  10. Fill H-G, Gericke A, Karagiannis D, Winter R (2007) Modellierung für Integrated Enterprise Balancing. Wirtschaftsinformatik 49:419–429CrossRefGoogle Scholar
  11. Gericke A, Fill H-G, Karagiannis D, Winter R (2009) Situational method engineering for governance, risk and compliance information systems. In: Proceedings of the 4th international conference on design science research in information systems and technology (DESRIST), ACM, Malvern, PennsylvaniaGoogle Scholar
  12. Glässner TM, Heumann F, Keßler L et al (2017) Experiences from the implementation of a structured-entity-relationship modeling method in a student project. In: 1st international workshop on practicing open enterprise modeling within OMiLAB (PrOse 2017) co-located with 10th IFIP WG 8.1 working conference on the practice of enterprise modelling (PoEM 2017), CEUR proceedings 1999, Leuven, BelgiumGoogle Scholar
  13. Guo L, Chen S, Xiao Z et al (2007) A performance study of BitTorrent-like peer-to-peer systems. IEEE J Sel Area Comm 25:155–169.  https://doi.org/10.1109/JSAC.2007.070116CrossRefGoogle Scholar
  14. Härer F (2018) Decentralized business process modeling and instance tracking secured by a blockchain. In: Proceedings of the 26th European conference on information systems (ECIS 2018), Portsmouth, United KingdomGoogle Scholar
  15. Härer F, Fill H-G (2019a) A comparison of approaches for visualizing blockchains and smart contracts. Jusletter IT Weblaw. ISSN 1664-848X 21.02.2019.  https://doi.org/10.5281/zenodo.2585575
  16. Härer F, Fill H-G (2019b) Decentralized attestation of conceptual models using the Ethereum blockchain. In: 21st IEEE international conference on business informatics (CBI 2019), Moscow, RussiaGoogle Scholar
  17. van Harmelen F, ten Teije A (2019) A boxology of design patterns for hybrid learning and reasoning systems. J Web Eng 18:97–124.  https://doi.org/10.13052/jwe1540-9589.18133CrossRefGoogle Scholar
  18. Karagiannis D, Mayr HC, Mylopoulos J (Hrsg) (2016) Domain-specific conceptual modeling. Springer, Berlin/HeidelbergGoogle Scholar
  19. Kim S, Kwon Y, Cho S (2018) A survey of scalability solutions on blockchain. In: 2018 international conference on information and communication technology convergence (ICTC), Jeju Island, KoreaGoogle Scholar
  20. Koblitz N (1987) Elliptic curve cryptosystems. Math Comput 48:203–209MathSciNetCrossRefGoogle Scholar
  21. Maier R (2007) Knowledge management systems: information and communication technologies for knowledge management, 3. Aufl. Springer, Berlin/HeidelbergGoogle Scholar
  22. Merkle RC (1988) A digital signature based on a conventional encryption function. In: A conference on the theory and applications of cryptographic techniques on advances in cryptology, Springer, London, UK, S 69–378CrossRefGoogle Scholar
  23. Mertens P, Bodendorf F, König W et al (2012) Grundzüge der Wirtschaftsinformatik, 11. Aufl. Springer, BerlinCrossRefGoogle Scholar
  24. Mirowski P, Nik-Khah E (2017) The knowledge we have lost in information – the history of information in modern economics. Oxford University Press, New YorkGoogle Scholar
  25. Mylopoulos J (1992) Conceptual modelling and telos. In: Loucopoulos P, Zicari R (Hrsg) Conceptual modelling, databases and case: an integrated view of information systems development. Wiley, New York, S 49–68Google Scholar
  26. Nakamoto S (2008) Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf. Zugegriffen am 28.06.2019
  27. Narayanan A, Bonneau J, Felten E et al (2016) Bitcoin and cryptocurrency technologies. Princeton University Press, PrincetonzbMATHGoogle Scholar
  28. Negash S, Gray P (2008) Business intelligence. In: Burstein F, W. Holsapple C (Hrsg) Handbook on decision support systems 2: variations. Springer, Berlin/Heidelberg, S 175–193CrossRefGoogle Scholar
  29. Nemetz M (2006) A meta-model for intellectual capital reporting. In: Reimer U, Karagiannis D (Hrsg) Practical aspects of knowledge management. Springer, Berlin/Heidelberg, S 213–223CrossRefGoogle Scholar
  30. NIST (2015) Secure Hash Standard (SHS). U.S. Department of Commerce.  https://doi.org/10.6028/NIST.FIPS.180-4
  31. Object Management Group (2014) Business Process Model and Notation (BPMN), version 2.0.2. http://www.omg.org/spec/BPMN/2.0.2. Zugegriffen am 14.08.2019
  32. Pittl B, Fill H-G (2019) A visual modeling approach for the semantic web rule language. Semantic Web:1–29.  https://doi.org/10.3233/SW-180340CrossRefGoogle Scholar
  33. Sinz EJ (2019) On the evolution of methods for conceptual information systems modeling. In: The art of structuring: bridging the gap between information systems research and practice. Springer International Publishing, Cham, S 137–144CrossRefGoogle Scholar
  34. Swarm (2019) Swarm 0.4 documentation. In: Ethereum Swarm repository. https://swarm-guide.readthedocs.io/en/latest/. Zugegriffen am 28.06.2019
  35. Tenorio-Fornés A, Hassan S, Pavón J (2018) Open peer-to-peer systems over blockchain and IPFS: an agent oriented framework. In: Proceedings of the 1st workshop on cryptocurrencies and blockchains for distributed systems – CryBlock’18, Munich, Germany, S 19–24Google Scholar
  36. Timm F, Zasada A, Thiede F (2016) Building a reference model for anti-money laundering in the financial sector. In: Proceedings of the 18th conference on learning, knowledge, data, analytics, Potsdam, Germany, S 10Google Scholar
  37. Tran AB, Lu Q, Weber I (2018) Lorikeet: a model-driven engineering tool for blockchain-based business process execution and asset management. In: 16th international conference on business process management (BPM 2018), Sydney, AustraliaGoogle Scholar
  38. Weber I, Xu X, Riveret R et al (2016) Untrusted business process monitoring and execution using blockchain. In: 14th international conference on business process management (BPM 2016), Rio de Janeiro, BrazilGoogle Scholar
  39. Wood G (2014) Ethereum: a secure decentralised generalised transaction ledger. https://ethereum.github.io/yellowpaper/paper.pdf. Zugegriffen am 28.06.2019

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2020

Authors and Affiliations

  1. 1.University of FribourgFribourgSchweiz

Personalised recommendations