Advertisement

Core components of automated driving – algorithms for situation analysis, decision-making, and trajectory planning

  • Christian LienkeEmail author
  • Manuel Schmidt
  • Christian Wissing
  • Martin Keller
  • Carlo Manna
  • Till Nattermann
  • Torsten Bertram
Conference paper
Part of the Proceedings book series (PROCEE)

Zusammenfassung

Automated driving is a key technology for the future of transportation. There are several motivations to develop automated vehicles. First and foremost, it promises to reduce the number of traffic accidents. Figure 1 shows the accidents recorded by the German police over the past years ([1]) ranging back to 1960.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1].
    Polizeilich erfasste Unfälle, Statistisches Bundesamt (Destatis), 2019. In www.destatis.de (Thematische Recherche: Zahlen & Fakten – Wirtschaftsbereiche – Transport & Verkehr – Verkehrsunfälle – Dokumentart: Tabelle). Abrufdatum: 06.02.2019
  2. [2].
    C. Wissing, T. Nattermann, K. H. Glander and T. Bertram, “Interaction-Aware Long-term Driving Situation Prediction,” in IEEE International Conference on Intelligent Transportation Systems 2018Google Scholar
  3. [3].
    S. Lefevre, D. Vasquez, and C. Laugier, “A survey on motion prediction and risk assessment for intelligent vehicles,” ROBOMECH Journal, vol. 1, no. 1, p. 1, Jul 2014.Google Scholar
  4. [4].
    T. Gindele, S. Brechtel, and R. Dillmann, “A probabilistic model for estimating driver behaviors and vehicle trajectories in traffic environments,” in 13th International IEEE Conference on Intelligent Transportation Systems, Sept 2010, pp. 1625–1631.Google Scholar
  5. [5].
    M. Schreier, V. Willert, and J. Adamy, “An integrated approach to maneuverbased trajectory prediction and criticality assessment in arbitrary road environments,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 10, pp. 2751–2766, Oct 2016.CrossRefGoogle Scholar
  6. [6].
    M. Bahram, C. Hubmann, A. Lawitzky, M. Aeberhard, and D. Wollherr, “A combined model- and learning-based framework for interaction-aware maneuver prediction,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 6, pp. 1538–1550, June 2016.CrossRefGoogle Scholar
  7. [7].
    M. Koschi and M. Althoff, “Interaction-aware occupancy prediction of road vehicles,” in 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Oct 2017, pp. 1–8.Google Scholar
  8. [8].
    D. S. Gonzalez, V. Romero-Cano, J. S. Dibangoye, and C. Laugier, “Interaction-aware driver maneuver inference in highways using realistic driver models,” in 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Oct 2017, pp. 1–8.Google Scholar
  9. [9].
    M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical observations and microscopic simulations,” Phys. Rev. E, vol. 62, pp. 1805–1824, Aug 2000.CrossRefGoogle Scholar
  10. [10].
    A. Kesting, M. Treiber, and D. Helbing, “General lane-changing model mobil for car-following models,” Transportation Research Record, vol. 1999, no. 1, pp. 86–94, 2007.CrossRefGoogle Scholar
  11. [11].
    M. Schmidt, C. Manna, J. Braun, C. Wissing, M. Mohamed and T. Bertram, “An Interaction-Aware Lane Change Behavior Planner for Automated Vehicles on Highways based on Polygon Clipping,” in IEEE Robotics and Automation LettersGoogle Scholar
  12. [12].
    M. Werling, J. Ziegler, S. Kammel and S. Thrun, “Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenét Frame,” in IEEE International Conference on Robotics and Automation 2010Google Scholar
  13. [13].
    C. Richter, A. Bry and N. Roy, “Polynomial Trajectory Planning for Aggressive Quadrotor Flight in Dense Indoor Environments,” in International Symposium ISRR 2016Google Scholar
  14. [14].
    C. Richter, A. Bry and N. Roy, “Polynomial trajectory planning for quadrotor flight,” in IEEE International Conference on Robotics and Automation 2013Google Scholar
  15. [15].
    B. Paden, M. Cap, S. Z. Yong, D. Yershov and E. Frazzoli, “A survey of motion planning and control techniques for self-driving urban vehicles,” in IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 33–55, 2016.CrossRefGoogle Scholar
  16. [16].
    D. Gonzalez, J. Perez, V. Milanes, and F. Nashashibi, “A review of motion planning techniques for automated vehicles,” in IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 4, pp. 1135–1145, 2016CrossRefGoogle Scholar
  17. [17].
    S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” Ph.D. dissertation, Iowa State University, Oct. 1998Google Scholar
  18. [18].
    M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee, “Motion planning for autonomous driving with a conformal spatiotemporal lattice,” in IEEE International Conference on Robotics and Automation (ICRA), pp. 4889–4895, 2011.Google Scholar
  19. [19].
    J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning for bertha — a local, continuous method,” in IEEE Intelligent Vehicles Symposium (IV), pp. 450–457, 2014.Google Scholar
  20. [20].
    C. Götte, M. Keller, T. Nattermann, C. Haß, K.-H. Glander, and T. Bertram, “Spline-based motion planning for automated driving,” in Proceedings of the 20th IFAC World Congress, pp. 9444–9449, 2017.Google Scholar
  21. [21].
    C. Lienke, M. Keller, K.-H. Glander, and T. Bertram, “An ad-hoc samplingbased planner for on-road automated driving,” in IEEE International Conference on Intelligent Transportation Systems (ITSC), pp. 2371–2376, 2018.Google Scholar
  22. [22].
    C. Wissing, T. Nattermann, K.-H. Glander, A. Seewald, and T. Bertram, “Environment simulation for the development, evaluation and verification of underlying algorithms for automated driving,” in AmE 2016 – Automotive meets Electronics; 7th GMM-Symposium, pp. 9–14, 2016.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2020

Authors and Affiliations

  • Christian Lienke
    • 1
    Email author
  • Manuel Schmidt
    • 1
  • Christian Wissing
    • 2
  • Martin Keller
    • 2
  • Carlo Manna
    • 2
  • Till Nattermann
    • 2
  • Torsten Bertram
    • 1
  1. 1.Technische Universität DortmundDortmundDeutschland
  2. 2.ZF GroupDüsseldorfDeutschland

Personalised recommendations