Methodology for the generation and execution of scenarios for the virtual driving test with automated driving functions

  • Martin HerrmannEmail author
Conference paper
Part of the Proceedings book series (PROCEE)


It is now generally accepted that it is – to a reasonable extent – impossible to test and validate automated driving functions exclusively with the help of real driving tests. It certainly makes sense to feed measurement data from the field test into an SIL environment in order to test new software versions. However, the usable amount of data is by far not sufficient for a statistical proof of safety [1].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    W. Wachenfeld and H. Winner, “The Release of Autonomous Vehicles,” in Autonomous Driving: Technical, Legal and Social Aspects, M. Maurer, J. C. Gerdes, B. Lenz, and H. Winner, Eds.: Springer, 2016, pp. 425–449.Google Scholar
  2. [2].
    A. Höfer, “Purpose Driven Scenario Generation”, Autonomous Vehicle Test & Development Symposium, Stuttgart, 2018Google Scholar
  3. [3].
    C. Amersbach, H. Winner, „Funktionale Dekomposition – Ein Beitrag zur Überwindung der Parameterraumexplosion bei der Validation von höher automatisiertem Fahren, 12. Workshop Fahrerassistenzsysteme und automatisiertes Fahren, Walting, 2018Google Scholar
  4. [4].
    P. Koopman, A. Kane, J. Black, „Credible Autonomy Safety Argumentation“, 27th Safety-Critical Systems Symposium, Bristol, 2019Google Scholar
  5. [5].
    R. Katz, “Automated Scenario Generation for Testing ADAS Based on Postprocessed Laserscanner Data”, Apply & Innovate, Karlsruhe, 2016Google Scholar
  6. [6].
    T. Form, “PEGASUS Method for Assessment of Highly Automated Driving Function”, SIP-adus Workshop 2018, Tokio, 2018Google Scholar
  7. [7].
    M. Überbacher, P. Wolze, T. Burtsche: „ Experiencing Safety Function Testing”, ATZ worldwide, Issue 7-8/2017Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2020

Authors and Affiliations

  1. 1.IPG Automotive GmbHKarlsruheDeutschland

Personalised recommendations