Advertisement

Analyses and Validation of Central Assessment Instruments of the Research Program TEDS-M

  • G. KaiserEmail author
  • J. König
Chapter
  • 18 Downloads

Abstract

The TEDS-Validate project has been carried out within the research program derived from Teacher Education and Development Study: Learning to Teach Mathematics (TEDS-M). In this chapter, we describe the aim of the study, which is related to the question of whether research findings brought forward by measurement instruments to test professional competence of mathematics teachers have predictive validity for the quality of their classroom instruction and the learning gains of their students. Based on this, we question whether situation-specific skills (measured via video-based assessments) contribute to explain instructional quality and learning gains of students – in addition to the effects of professional knowledge of teachers. To answer the research questions, data was collected in Thuringia, Saxony and Hesse from 2016 to 2019 with a survey of 113 in-service teachers. They were tested using web-based instruments to capture their mathematics, mathematics pedagogical and general pedagogical knowledge as well as their noticing competencies. TEDS-Validate points out the broad applicability of the instruments for the comprehensive measurement of mathematics teachers competencies. To evaluate the effects of prospective teachers’ practical activities during their school practicum within the master study of initial teacher education, these instruments will be applied in a follow-up transfer project.

Keywords

Mathematics teachers’ competencies teachers’ knowledge noticing instructional quality students learning gains international comparative studies transfer activities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Baumert, J., & Kunter, M. (2006). Stichwort: Professionelle Kompetenz von Lehrkräften. Zeitschrift für Erziehungswissenschaft, 9, 469–520.Google Scholar
  2. Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., Klusmann, U., Krauss, S., Neubrand, M., & Tsai, Y.-M. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47, 133–180.Google Scholar
  3. Benecke, K. (2018). Messung von Unterrichtsqualität durch Unterrichtsbeobachtungen – eine Studie zum Vergleich von Live- und Video-Rating. In R. Biehler et al. (Eds.), Beiträge zum Mathematikunterricht 2018 (pp. 2063–2064). Münster: WTM-Verlag.Google Scholar
  4. Berliner, D. C. (2004). Describing the behavior and documenting the accomplishments of expert teachers. Bulletin of Science, Technology & Society, 24(3), 200–212.CrossRefGoogle Scholar
  5. Blömeke, S. (2017) Modelling teachers’ professional competence as a multi-dimensional construct. S. Guerriero (Ed.), Pedagogical Knowledge and the Changing Nature of the Teaching Profession (pp. 119–135). Paris: OECD.Google Scholar
  6. Blömeke, S. & Delany, S. (2012). Assessment of teacher knowledge across countries: A review of the state of research. ZDM Mathematics Education, 44, 223–247.Google Scholar
  7. Blömeke, S., Gustafsson, J.-E. & Shavelson, R. (2015). Beyond dichotomies: Competence viewed as a continuum. Zeitschrift für Psychologie, 223(1), 3–13.Google Scholar
  8. Blömeke, S., Kaiser, G., & Lehmann, R. (Eds.). (2010a). TEDS-M 2008 – Professionelle Kompetenz und Lerngelegenheiten angehender Primarstufenlehrkräfte im internationalen Vergleich. Münster: Waxmann.Google Scholar
  9. Blömeke, S., Kaiser, G., & Lehmann, R. (Eds.). (2010b). TEDS-M 2008 – Professionelle Kompetenz und Lerngelegenheiten angehender Mathematiklehrkräfte im internationalen Vergleich. Münster: Waxmann.Google Scholar
  10. Blömeke, S., Bremerich-Vos, A., Haudeck, H., Kaiser, G., Lehmann, R., Nold, G., Schwippert, K., & Willenberg, H. (Eds.). (2011). Kompetenzen von Lehramtsstudierenden in gering strukturierten Domänen. Erste Ergebnisse aus TEDS-LT. Münster: Waxmann.Google Scholar
  11. Blömeke, S., Hsieh, F.-J., Kaiser, G., & Schmidt, W.H. (Eds.). (2014). International Perspectives on Teacher Knowledge, Beliefs and Opportunities to Learn. Dordrecht: Springer.Google Scholar
  12. Blömeke, S., König, J., Busse, A., Suhl, U., Benthien, J., Döhrmann, M. & Kaiser, G. (2014). Von der Lehrerausbildung in den Beruf – Fachbezogenes Wissen als Voraussetzung für Wahrnehmung, Interpretation und Handeln im Unterricht. Zeitschrift für Erziehungswissenschaft, 17 (3), 509–542.Google Scholar
  13. Blömeke, S., Kaiser, G., König, J., & Jentsch, A. (accepted, 2020). Profiles of mathematics teachers’ knowledge, beliefs, and skills, and their relation to instructional quality. ZDM Mathematics Education, 52(3).Google Scholar
  14. BMBF (2014) = Bundesministerium für Bildung und Forschung. (2014). Bekanntmachung des Bundesministeriums für Bildung und Forschung von Richtlinien zur Förderung der „Qualitätsoffensive Lehrerbildung“. Berlin: BMBF.Google Scholar
  15. Bruckmaier, G., Krauss, S., Blum, W., & Leiss, D. (2016). Measuring mathematical teachers’ professional competence by using video clips (COACTIV video). ZDM Mathematics Education, 48 (1), 111–124.Google Scholar
  16. Buchholtz, N., Scheiner, T., Döhrmann, M., Suhl, U., Kaiser, G., & Blömeke, S. (2016). TEDS-shortM. Kurzfassung der mathematischen und mathematikdidaktischen Testinstrumente aus TEDS-M, TEDSLT und TEDS-Telekom. Hamburg: Universität Hamburg.Google Scholar
  17. Cochran-Smith, M., & Zeichner, K.M. (2005). Studying teacher education: The report of the AERA Panel on Research and Teacher Education. Mahwah, NJ: Erlbaum.Google Scholar
  18. Cronbach, L. J., Gleser, G., Nanda, H. & Rajaratnam, N. (1972). The dependability of behavioral measurements: Theory of generalizability for scores and profiles. New York: Wiley.Google Scholar
  19. Darling-Hammond, L., Berry, B., & Thoreson, A. (2001). Does teacher certification matter? Evaluating the evidence. Educational Evaluation and Policy Analysis, 23(1), 57–77.Google Scholar
  20. Embretson, S. (1983). Construct validity. Contruct representation versus the nomothetic span. Psychological Bulletin, 93 (1), 179–197.CrossRefGoogle Scholar
  21. Flores, M. A. (2016). Teacher Education Curriculum. In J. Loughran, & M.L. Hamilton (Eds.), International Handbook of Teacher Education (pp. 187–230). Dordrecht: Springer.Google Scholar
  22. Großschedl, J., Harms, U., Kleickmann; T. and Glowinski, I. (2015) ‘Preservice Biology Teachers’ Professional Knowledge: Structure and Learning Opportunities‘. Journal of Science Teacher Education, 26(3), 291–318.CrossRefGoogle Scholar
  23. Guerriero, S. (Eds.). (2017). Pedagogical Knowledge and the Changing Nature of the Teaching Profession. Paris: OECD.Google Scholar
  24. Hattie, J. (2009). Visible Learning: a synthesis of over 800 meta-analyses relating to achievement. London: Routledge.Google Scholar
  25. Helmke, A. (2012). Unterrichtsqualität und Lehrerprofessionalität: Diagnose, Evaluation und Verbesserung des Unterrichts. Seelze-Velber: Klett/Kallmeyer.Google Scholar
  26. Hill, H. C., Rowan, B. & Ball, D. L. (2005). Effects of Teachers’ Mathematical Knowledge for Teaching on Student Achievement. American Educational Research Journal, 42, 371–406.Google Scholar
  27. Jentsch, A., Schlesinger, L., Heinrichs, H., Kaiser, G., König, J., & Blömeke, S. (under review). Unterrichtsqualität unter einer mathematikdidaktischen Perspektive – Konzeptualisierung, Messung und Validierung. Journal für Mathematik-Didaktik.Google Scholar
  28. Jordan, A., Ross, N., Krauss, S., Baumert, J., Blum, W., Neubrand, M., et al. (2006). Klassifikationsschema für Mathematikaufgaben: Dokumentation der Aufgabenkategorisierung im COACTIV-Projekt. Berlin: Max-Planck-Institut für Bildungsforschung.Google Scholar
  29. Kaiser, G., Blömeke, S., König, J., Busse, A., Döhrmann, M. & Hoth, J. (2017). Professional competencies of (prospective) mathematics teachers – cognitive versus situated approaches. Educational Studies in Mathematics, 94 (2), 161–182.Google Scholar
  30. Kaiser, G., Busse, A., Hoth, J., König, J. & Blömeke, S. (2015). About the Complexities of Video-Based Assessments: Theoretical and Methodological Approaches to Overcoming Shortcomings of Research on Teachers‘ Competence. International Journal of Science and Mathematics Education, 13(2), 369–387.Google Scholar
  31. Kaiser, G., & König, J. (2019). Competence Measurement in (Mathematics) Teacher Education and Beyond: Implications for Policy. Higher Education Policy, 32, DOI: 10.1057/s41307–019-019–00139-z.Google Scholar
  32. Kersting, N. B., Givvin, K. B., Thompson, B. J., Santagata, R. & Stigler, J. W. (2012). Measuring usable knowledge: Teachers’ analyses of mathematics classroom videos predict teaching quality and student learning. American Educational Research Journal, 49, 568–589.Google Scholar
  33. Klemenz, S. & König, J. (2019). Modellierung von Kompetenzniveaus im pädagogischen Wissen bei angehenden Lehrkräften: Zur kriterialen Beschreibung von Lernergebnissen der fächerübergreifenden Lehramtsausbildung. Zeitschrift für Pädagogik, 65 (3), 355–377.Google Scholar
  34. Klieme, E., & Leutner, D. (2006). Kompetenzmodelle zur Erfassung individueller Lernergebnisse und zur Bilanzierung von Bildungsprozessen. Beschreibung eines neu eingerichteten Schwerpunktprogramms der DFG. Zeitschrift für Pädagogik, 52(6), 876–903.Google Scholar
  35. König, J. (2009). Zur Bildung von Kompetenzniveaus im Pädagogischen Wissen von Lehramtsstudierenden: Terminologie und Komplexität kognitiver Bearbeitungsprozesse als Anforderungsmerkmale von Testaufgaben?, Lehrerbildung auf dem Prüfstand, 2(2), 244-262.Google Scholar
  36. König, J. (2019). Pedagogical Knowledge in Teacher Education. In M. A. Peters (Eds.), Encyclopedia of Teacher Education. Dordrecht: Springer.Google Scholar
  37. König, J. (2014). Designing an International Instrument to Assess Teachers’ General Pedagogical Knowledge (GPK): Review of Studies, Considerations, and Recommendations. Technical paper prepared for the OECD Innovative Teaching for Effective Learning (ITEL) – Phase II Project: A Survey to Profile the Pedagogical Knowledge in the Teaching Profession (ITEL Teacher Knowledge Survey). OECD: Paris.Google Scholar
  38. König, J. (2015). Measuring Classroom Management Expertise (CME) of Teachers: A Video-Based Assessment Approach and Statistical Results. Cogent Education, 2 (1), 991178.Google Scholar
  39. König, J. & Blömeke, S. (2010). Pädagogisches Unterrichtswissen (PUW). Dokumentation der Kurzfassung des TEDS-M-Testinstruments zur Kompetenzmessung in der ersten Phase der Lehrerausbildung. Berlin: Humboldt-Universität.Google Scholar
  40. König, J. & Blömeke, S. (2013). Preparing Teachers of Mathematics in Germany. In J. Schwille, L. Ingvarson & R. Holdgreve-Resendez (Eds.), TEDS-M Encyclopaedia. A Guide to Teacher Education Context, Structure and Quality Assurance in 17 Countries. Findings from the IEA Teacher Education and Development Study in Mathematics (TEDS-M) (pp. 100–115). Amsterdam: IEA.Google Scholar
  41. König, J., Blömeke, S., Klein, P., Suhl, U., Busse, A., & Kaiser, G. (2014). Is teachers’ general pedagogical knowledge a premise for noticing and interpreting classroom situations? A video-based assessment approach. Teaching and Teacher Education, 38, 76–88.Google Scholar
  42. König, J., Blömeke, S., Paine, L., Schmidt, B. & Hsieh, F-J. (2011). General Pedagogical Knowledge of Future Middle School Teachers. On the Complex Ecology of Teacher Education in the United States, Germany, and Taiwan. Journal of Teacher Education, 62 (2), 188–201.Google Scholar
  43. König, J., Kaiser, G., Blömeke, S., Jentsch, A., Schlesinger, L., Nehls, C., & Suhl, U. (under review). Teaching and learning in the lower secondary mathematics classroom: Analyzing the links between pedagogical competence, instructional quality, and student achievement.Google Scholar
  44. König, J., & Kramer, C. (2016). Teacher professional knowledge and classroom management: On the relation of general pedagogical knowledge (GPK) and classroom management expertise (CME). ZDM Mathematics Education, 48 (1), 139–151.Google Scholar
  45. König, J., Lammerding, S., Nold, G., Rohde, A., Strauß, S. & Tachtsoglou, S. (2016). Teachers’ Professional Knowledge for Teaching English as a Foreign Language: Assessing the Outcomes of Teacher Education. Journal of Teacher Education, 67 (4), 320–337.Google Scholar
  46. König, J., & Pflanzl, B. (2016). Is teacher knowledge associated with performance? On the relationship between teachers’ general pedagogical knowledge and instructional quality. European Journal of Teacher Education, 39 (4), 419–436.Google Scholar
  47. König, J., Rothland, M., & Schaper, N. (Eds.). (2018). Learning to Practice, Learning to Reflect? Ergebnisse aus der Längsschnittstudie LtP zur Nutzung und Wirkung des Praxissemesters in der Lehrerbildung. Wiesbaden: Springer.Google Scholar
  48. Krainer, K., & Llinares, S. (2010). Mathematics teacher education, in P. Peterson, E. Baker, & B. McGaw (Eds). International Encyclopedia of Education (pp. 702–705). Oxford: Elsevier.Google Scholar
  49. Krauss, S., Lindl, A., Schilcher, A., Fricke, M., Göhring, A. & Hofmann, B. (Eds.). (2017). FALKO: Fachspezifische Lehrerkompetenzen: Konzeption von Professionswissenstests in den Fächern Deutsch, Englisch, Latein, Physik, Musik, Evangelische Religion und Pädagogik. Münster: Waxmann.Google Scholar
  50. Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., & Neubrand, M. (Eds.). (2011). Professionelle Kompetenz von Lehrkräften. Ergebnisse des Forschungsprogramms COACTIV. Münster: Waxmann.Google Scholar
  51. Lawson, T., Cakmak, M., Gündüz, M., & Busher, H. (2015). Research on teaching practicum – a systematic review. European Journal of Teacher Education, 38(3), 392–407.Google Scholar
  52. Nehls, C., König, J., Kaiser, G., & Blömeke, S. (2020). Profiles of teachers’ general pedagogical knowledge: Nature, causes and effects on beliefs and instructional quality. ZDM Mathematics Education, 52(3). https://doi.org/10.1007/s111858-010-01102-3.Google Scholar
  53. Nehls, C., König, J., Kaiser, G., Klemenz, S., Ross, N., & Blömeke, S. (under review). Pädagogisches Wissen von berufstätigen Mathematiklehrkräften – Validierung der Konstruktrepräsentation im TEDS-M-Instrument. Diagnostica.Google Scholar
  54. Palardy, G. J. & Rumberger, R.W. (2008). Teacher Effectiveness in First Grade: The Importance of Background Qualifications, Attitudes, and Instructional Practices for Student Learning. Educational Evaluation and Policy Analysis, 30, 111–140.Google Scholar
  55. Pankow, L., Kaiser, G., Busse, A., König, J., Blömeke, S., Hoth, J., & Döhrmann, M. (2016). Early career teachers’ ability to focus on typical students errors in relation to the complexity of a mathematical topic. ZDM Mathematics Education, 48(1–2), 55–67.Google Scholar
  56. Ross, N., & Kaiser, G. (2018). Klassifikation von Mathematikaufgaben zur Untersuchung mathematisch-kognitiver Aspekte von Schülerleistungstests und von Unterrichtsqualität. In R. Biehler et al. (Eds.), Beiträge zum Mathematikunterricht 2018 (pp. 1519–1522). Münster: WTM-Verlag.Google Scholar
  57. Rowland, T., & Ruthven, K. (Eds.). (2011). Mathematical knowledge in teaching. Dordrecht: Springer.Google Scholar
  58. Schlesinger, L., Jentsch, A., Kaiser, G., König, J., & Blömeke, S. (2018). Subject-specific characteristics of instructional quality in mathematics education. ZDM Mathematics Education, 50 (3), 475–490.Google Scholar
  59. Seidel, T., & Stürmer, K. (2014). Modeling and measuring the structure of professional vision in preservice teachers. American Educational Research Journal, 51(4), 739–771.Google Scholar
  60. Sherin, M. G., Jacobs, V. R., & Philipp, R. A. (Eds.). (2011). Mathematics Teacher Noticing. Seeing Through Teachers’ Eyes. New York: Routledge.Google Scholar
  61. Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Research, 57, 1–22.CrossRefGoogle Scholar
  62. Stahnke, R., Schueler, S., & Roesken-Winter, B. (2016). Teachers‘ perception, interpretation, and decision-making: a systematic review of empirical mathematics education research. ZDM Mathematics Education, 48(1–2), 1–27.Google Scholar
  63. Stigler, J. W., & Miller, K. F. (2018). Expertise and Expert Performance in Teaching. In A. Ericsson, R.R. Hoffman, A. Kozbelt, & A. M. Williams (Eds.), The Cambridge Handbook of Expertise and Expert Performance (pp. 431–452). Cambridge: Cambridge University Press.Google Scholar
  64. Tatto, M. T., & Senk, S. (2011). The mathematics education of future primary and secondary teachers: Methods and findings from the Teacher Education and Development Study in Mathematics. Journal of Teacher Education, 62(2), 121–137.Google Scholar
  65. Voss, T., Kunter, M., Seiz, J., Hoehne, V., & Baumert, J. (2014). Die Bedeutung des pädagogisch- psychologischen Wissens von angehenden Lehrkräften für die Unterrichtsqualität. Zeitschrift für Pädagogik, 60(2), 184–201.Google Scholar
  66. Weinert, F. E. (2001). Concept of Competence: A Conceptual Clarification. In D. S. Rychenj & L.H. Salganik (Eds.), Defining and Selecting Key Competencies (pp. 45–66). Göttingen: Hogrefe.Google Scholar
  67. Yang, X., Kaiser, G., König, J., & Blömeke, S. (2018). Measuring Chinese Teacher Professional Competence: Adapting and Validating a German Framework in China. Journal of Curriculum Studies, 50 (5), 638–653.Google Scholar
  68. Yang, X., Kaiser, G., König, J. & Blömeke, S. (2019). Professional Noticing of Mathematics Teachers: a Comparative Study Between Germany and China. International Journal of Science and Mathematics Education, 17(5), 943–963.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Universität HamburgHamburgGermany
  2. 2.Universität zu KölnKölnGermany

Personalised recommendations