Vehicle side-slip angle estimation with deep neural network and sensor data fusion

  • Yuran LiangEmail author
  • Steffen Müller
  • Daniel Rolle
  • Dieter Ganesch
  • Immanuel Schaffer
Conference paper
Part of the Proceedings book series (PROCEE)


Modern chassis control systems, advanced driver assistance systems (ADAS) and automated driving systems that demand a precise vehicle localization or a reasonable trajectory planning desire a highly accurate and reliable vehicle state estimation. However, the traditional methods such as Kalman and RLS filter, which based on the vehicle dynamic model, mainly rely on the differential equations that approximate the vehicle behaviour in reality [1, 27, 31]. The vehicle dynamics is such a nonlinear and multidimensional system with numerous parameters, which makes it very difficult to adapt the parameters in different situations and figure out appropriate model equations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1] Anton Obermüller, Modellbasierte Fahrzustandsschätzung zur Ansteuerung einer aktiven Hinterachskinematik, Dissertation, TU München, 2012.Google Scholar
  2. [2] Baumgarten Goetz, Verfahren zur Erzeugung eines Schwimmwinkelsignals, 14.06.2012.Google Scholar
  3. [3] J. Bechtoff, L. Koenig, and R. Isermann, “Cornering Stiffness and Sideslip Angle Estimation for Integrated Vehicle Dynamics Control,” IFAC-PapersOnLine, vol. 49, no. 11, pp. 297–304, 2016.Google Scholar
  4. [4] B. L. Boada, M.J.L. Boada, and V. Diaz, “Vehicle sideslip angle measurement based on sensor data fusion using an integrated ANFIS and an Unscented Kalman Filter algorithm,” Mechanical Systems and Signal Processing, 72-73, pp. 832–845, 2016.Google Scholar
  5. [5] A. Brunker, T. Wohlgemuth, M. Frey et al., “Odometry 2.0: A Slip-Adaptive EIF-Based Four-Wheel-Odometry Model for Parking,” IEEE Transactions on Intelligent Vehicles, p. 1, 2019.Google Scholar
  6. [6] R. Clark, S. Wang, H. Wen et al., “VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem,” 1/29/2017.Google Scholar
  7. [7] B. D. Lucas and T. Kanade, “An Iterative Image Registration Technique with an Application to Stereo Vision (IJCAI),” vol. 81, 1981.Google Scholar
  8. [8] J. Engel, J. Stuckler, and D. Cremers, “Large-scale direct SLAM with stereo cameras,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1935–1942, IEEE, 28.09.2015 - 02.10.2015.Google Scholar
  9. [9] A. Eskandarian, Handbook of Intelligent Vehicles, Springer London, London, 2012.Google Scholar
  10. [10] G. Farnebäck, “Two-Frame Motion Estimation Based on Polynomial Expansion,” in Image Analysis, J. Bigun and T. Gustavsson, Eds., pp. 363–370, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.Google Scholar
  11. [11] P. Fischer, A. Dosovitskiy, E. Ilg et al., “FlowNet: Learning Optical Flow with Convolutional Networks,” 4/26/2015.Google Scholar
  12. [12] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, The MIT Press, Cambridge, Massachusetts, London, England, 2016.Google Scholar
  13. [13] T. Graber, S. Lupberger, M. Unterreiner et al., “A Hybrid Approach to Side-Slip Angle Estimation with Recurrent Neural Networks and Kinematic Vehicle Models,” IEEE Transactions on Intelligent Vehicles, p. 1, 2018.Google Scholar
  14. [14] J. Graeter, A. Wilczynski, and M. Lauer, “LIMO: Lidar-Monocular Visual Odometry,” 7/19/2018.Google Scholar
  15. [15] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.Google Scholar
  16. [16] E. Ilg, N. Mayer, T. Saikia et al., “FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks,” 12/6/2016.Google Scholar
  17. [17] Jonathan Horgan, Patrick McDaid, and Petros Kapsalas, Verfahren zum Bestimmen eines Bewegungsparameters eines Kraftfahrzeugs durch Auffinden von invarianten Bildregionen in Bildern einer Kamera des Kraftfahrzeugs, Kamerasystem und Kraftfahrzeug, 28.12.2012.Google Scholar
  18. [18] D. Kellner, M. Barjenbruch, J. Klappstein et al., “Instantaneous ego-motion estimation using multiple Doppler radars,” in 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1592–1597, IEEE, 5/31/2014 - 6/7/2014.Google Scholar
  19. [19] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” 12/22/2014.Google Scholar
  20. [20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.Google Scholar
  21. [21] J. Ku, M. Mozifian, J. Lee et al., “Joint 3D Proposal Generation and Object Detection from View Aggregation,” 2018.Google Scholar
  22. [22] M. Maaref, J. Khalife, and Z. M. Kassas, “Lane-Level Localization and Mapping in GNSS-Challenged Environments by Fusing Lidar Data and Cellular Pseudoranges,” IEEE Transactions on Intelligent Vehicles, p. 1, 2018.Google Scholar
  23. [23] Mirek Göbel, Verfahren zum Bestimmen des Fahrzustands eines zweispurigen Fahrzeugs durch SchwimmwinkelSchätzung, 02.03.2006.Google Scholar
  24. [24] T. Miyasaka, Y. Ohama, and Y. Ninomiya, “Ego-motion estimation and moving object tracking using multi-layer LIDAR,” in 2009 IEEE Intelligent Vehicles Symposium, pp. 151–156, IEEE, 6/3/2009 - 6/5/2009.Google Scholar
  25. [25] P. Munro, H. Toivonen, G. I. Webb et al., “Bias Variance Decomposition,” in Encyclopedia of Machine Learning, C. Sammut and G. I. Webb, Eds., pp. 100–101, Springer US, Boston, MA, 2010.Google Scholar
  26. [26] R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras,” IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.Google Scholar
  27. [27] K. Nam, S. Oh, H. Fujimoto et al., “Estimation of Sideslip and Roll Angles of Electric Vehicles Using Lateral Tire Force Sensors Through RLS and Kalman Filter Approaches,” IEEE Transactions on Industrial Electronics, vol. 60, no. 3, pp. 988–1000, 2013.Google Scholar
  28. [28] T. Novi, R. Capitani, and C. Annicchiarico, “An integrated artificial neural network– unscented Kalman filter vehicle sideslip angle estimation based on inertial measurement unit measurements,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 14, 095440701879064, 2018.Google Scholar
  29. [29] N. Paragios, Y. Chen, and O. Faugeras, Handbook of Mathematical Models in Computer Vision, Springer-Verlag, s.l., 2006.Google Scholar
  30. [30] R. Rajamani, Vehicle dynamics and control, Springer, New York, NY, 2012.Google Scholar
  31. [31] Rudolf Ertlmeier, Modellbasierte und fahrdynamikunterstützte Überschlagserkennung, Dissertation, Otto-von-Guericke-Universität Magdeburg, 2013.Google Scholar
  32. [32] D. Schramm, M. Hiller, and R. Bardini, Vehicle dynamics: Modeling and simulation, Springer, Berlin, 2018.Google Scholar
  33. [33] D. Selmanaj, M. Corno, G. Panzani et al., “Robust Vehicle Sideslip Estimation Based on Kinematic Considerations,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 14855–14860, 2017.Google Scholar
  34. [34] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics, MIT Press, Cambridge, Mass., 2006.Google Scholar
  35. [35] R. Wang, M. Schwörer, and D. Cremers, “Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras,” 8/25/2017.Google Scholar
  36. [36] K. Zindler, N. Geiss, K. Doll et al., “Real-time ego-motion estimation using Lidar and a vehicle model based Extended Kalman Filter,” in 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 431–438, IEEE, 10/8/2014 - 10/11/2014.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2020

Authors and Affiliations

  • Yuran Liang
    • 1
    Email author
  • Steffen Müller
    • 2
  • Daniel Rolle
    • 1
  • Dieter Ganesch
    • 1
  • Immanuel Schaffer
    • 1
  1. 1.BMW GroupMunichGermany
  2. 2.TU BerlinBerlinGermany

Personalised recommendations