Advertisement

Quasi-static and dynamic suspension measurements vs. multi-body and real‑time simulation results

  • Sebastian LefèvreEmail author
  • Frédéric Etienne Kracht
  • Dieter Schramm
Conference paper
Part of the Proceedings book series (PROCEE)

Abstract

The aim of real-time models is, on the one hand, to improve driving dynamics and ride performance and, on the other hand, to be able to be used in driving simulators. In order to achieve these goals, not only a short computation time is necessary, but also the model accuracy is very important. For this reason, this paper investigates the simulation results of a developed real-time model and compares them with results from physical tests and a multibody simulation model. The influence of the modeling level on the simulation results is discussed in the context of the investigations carried out. For quasistatic analysis the Kinematic & Compliance (K&C) test rig and for dynamic tests a dynamic suspension test rig is used.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Bell, S., Ellis, J., Garrott, W. & Liao, Y., 1987. Suspension testing using the suspension parameter measurement device. SAE 870577,  https://doi.org/10.4271/870577.
  2. Brems, W., Van Doornik, J., De Vries, E. & Wiedemann, J., 2015. Frequency response and latency analysis of a driving simulator for chassis development and vehicle dynamics evaluation, S. 109-116: DSC Europe - Driving Simulation Conference Exhibition.Google Scholar
  3. Caputo, A., Spina, M. & Guglielmino, E., 2003. Sensitivity of Suspension System Performance to Bushing Stiffness Variation - An Evaluation Methology. s.l.:SAE Technical Paper 2003-01-0237,  https://doi.org/10.4271/2003-01-0237.
  4. Drogies, I. S., 2006. Objektorientierte Modellbildung des fahrdynamischen Verhaltens mit MODELICA in Fahrdynamik-Regelung. s.l.:Springer, pp. 71-91.Google Scholar
  5. Haberzettl, S., Zschocke, A. & Gauterin, F., 2015. A new method for studying the longitudinal dynamic behaviour of a suspension on a test rig. s.l.:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,  https://doi.org/10.1177/0954407015601265.
  6. Heine, J. & Haberzettl, S., 2014. Achsentwicklung am Fahrwerk-Identifikations- Prüfstand. Baden-Baden: 17. Kongress Simulation und Erprobung im Fahrzeugbau, Berechnung, Prüfstands- und Straßenversuch, 18.-19. Nov, 2014, pp. 871-884.Google Scholar
  7. Holdmann, P., Köhn, P., Möller, B. & Willems, R., 1998. Suspension kinematics and compliance - measuring and simulation. s.l.:SAE Technical Paper 980897,  https://doi.org/10.4271/980897.
  8. Kracht, F. E., Dandekar, R., Bruckmann, T. & Schramm, D., 2017. Echtzeitfähige Objektorientierte Modellbildung am Beispiel einer Fahrzeug-Radaufhängung, “Realtime object-oriented modeling with the example of a vehicle wheel suspension”. presented at the Dritte IFToMM D-A-CH Konferenz TU Chemnitz: s.n.Google Scholar
  9. Kracht, F. E., Saba, M. & Schramm, D., 2018. Real-time Calculation of Reaction Forces and Elasticities in Vehicle Wheel Suspensions. Beijing, China: presented at the 14th Interna-tional Symposium on Advanced Vehicle Control (AVEC’18), 16-20 Juli 2018.Google Scholar
  10. Kracht, F. & Schramm, D., 2019. Real-Time Capable Calculation of Reaction Forces of Multibody Systems Using Optimized Bushings on the Example of a Vehicle Wheel Suspension (in press). Duisburg: ECCOMAS Multibody Dynamics Conference.Google Scholar
  11. Pacejka, H., 2009. Tyre and Vehicle Dynamics. Oxford: Butterworth-Heinemann Elsevier Ltd. ISBN: 978-0-7506-6918-4.Google Scholar
  12. Scheiblegger, C., Pfeffer, P., Karrer, H. & Geiger, N., 2011. Modellierung von Elastomerlagern und Hydrolagern zur Simulation von Fahrkomfort und Fahrdynamik. S. 247-267: VDI: Reifen-Fahrwerk-Fahrbahn.Google Scholar
  13. Schramm, D., Hiller, M. & Bardini, R., 2018. Vehicle Dynamics: Modeling and Simulation. Berlin: Springer-Verlag GmbH Deutschland ISBN: 978-3-662-54482-2.Google Scholar
  14. Schütz, H., 2014. Validierung eines mehraxialen Fahrwerkprüfstands. Karlsruhe: Diplomarbeit.Google Scholar
  15. Will, V., 2018. Entwicklung einer fachbereichsübergreifenden Standardauswerteroutine für dynamische Prüfstandsuntersuchungen von Fahrwerken. Stuttgart: Masterarbeit.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2020

Authors and Affiliations

  • Sebastian Lefèvre
    • 1
    Email author
  • Frédéric Etienne Kracht
    • 2
  • Dieter Schramm
    • 2
  1. 1.Dr. Ing. h. c. F. Porsche AGWeissachGermany
  2. 2.Lehrstuhl für Mechatronik, Abteilung Maschinenbau und VerfahrenstechnikUniversität Duisburg-EssenDuisburg-EssenGermany

Personalised recommendations