Designing Smart Logistics Processes Using Cyber-Physical Systems and Complex Event Processing

  • C. AliasEmail author
  • M. Zahlmann
  • F. E. Alarcón Olalla
  • H. Iwersen
  • B. Noche


The call for smarter, possibly digitized solutions in transportation and logistics to overcome today’s shortcomings is ubiquitous. Thus, the sector pursues the vision of smart logistics, a paradigm with which inefficiency is to be eliminated and potential for improvement and efficiency gains exploited consistently. Particularly, technological progress fuels the vision as technologies are oftentimes pinned hope of its achievement upon. Cyber-physical systems (CPS) and complex event processing (CEP) belong to these promising technologies as they can be employed in transportation and logistics processes for the purpose of data collection and processing, respectively.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alias C, Özgür Ç, Jawale M, Noche B (2014) Analyzing The Potential of Future-Internet-Based Logistics Control Tower Solutions in Warehouses. In: 2014 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI). IEEE, Piscataway (NJ), USA, pp 452–457Google Scholar
  2. Alias C, Lederman Rawet V, Ratton Neto HX, Neirão Reymão, José do Egypto (2016) Investigating into the Prevalence of Complex Event Processing and Predictive Analytics in the Transportation and Logistics Sector: Initial Findings from Scientific Literature. In: Proceedings of the 10th Mediterranean Conference on Information Systems 2016 (MCIS 2016). AIS Electronic Library (AISeL), (17 pages)Google Scholar
  3. Alias C, Alarcón Olalla FE, Potechin A, Noche B (2018) Comparing Methods of Technology Benefit Assessment Regarding Their Applicability to Transportation and Logistics. submitted for publication. In: Proceedings of the 2018 IEEE International Conference on Smart Manufacturing, Industrial & Logistics Engineering (submitted for publication)Google Scholar
  4. Bruns R, Dunkel J (2015) Complex Event Processing: Komplexe Analyse von massiven Datenströmen mit CEP. Essentials. Springer Vieweg, Wiesbaden, GermanyCrossRefGoogle Scholar
  5. Etzion O, Niblett P (2011) Event Processing in Action. Manning, Greenwich (CT), USAGoogle Scholar
  6. Gregory T, Krajčovič M, Więcek D (2017) Smart Connected Logistics. Procedia Engineering 192:265–270. Scholar
  7. Hedtstück U (2017) Complex Event Processing: Verarbeitung von Ereignismustern in Datenströmen. Springer Vieweg, Berlin, GermanyCrossRefGoogle Scholar
  8. Hribernik K, Warden T, Thoben K-D, Herzog O (2010) An Internet of Things for Transport Logistics: An Approach to Connecting the Information and Material Flows in Autonomous Cooperating Logistics Processes. In: Hvolby H-H, Gundelund CH, Nielsen P, Nielsen IE, Dukovska-Popovska I, Steger-Jensen K (eds) Proceedings of the 12th International Conference on Modern Information Technology & Innovation Processes of the Enterprises. Aalborg University, Denmark, Aalborg, Denmark, pp 54–67Google Scholar
  9. Kohnhauser V, Schobesberger M, Siller M, Peterwagner C (2017) Wege zu Smart Logistics: Integration von Informations- und Kommunikationstechnologien in KMU. Accessed 28 August 2017
  10. Lee EA, Seshia SA (2012) Introduction to embedded systems: A cyber physical systems approach, 1st edn., LuluGoogle Scholar
  11. Leitão P, Colombo AW, Karnouskos S (2016) Industrial automation based on cyber-physical systems technologies: Prototype implementations and challenges. Computers in Industry 81:11–25. Scholar
  12. Luckham DC (2012) Event processing for business: Organizing the real-time strategy enterprise. Wiley, Hoboken (N.J), USAGoogle Scholar
  13. Luckham DC (2013) The Power of Events: An introduction to complex event processing in distributed enterprise systems, 6th edn. Addison-Wesley; Pearson Education, Harlow, UKGoogle Scholar
  14. Luckham DC, Schulte R (2008) Event Processing Glossary: Version 1.1. Accessed 18 September 2017
  15. Ollesch J, Hesenius M, Gruhn V (2017a) Engineering Events in CPS – Experiences and Lessons Learned. In: 2017 IEEE/ACM 3rd International Workshop on Software Engineering for Smart Cyber-Physical Systems: IEEE/ACM SEsCPS 2017. IEEE, Piscataway (NJ), USA, pp 3–9Google Scholar
  16. Ollesch J, Hesenius M, Gruhn V, Alias C (2017b) The Requirements Engineering Perspective on Events in Cyber-Physical Systems. In: Proceedings of the 11th ACM International Conference on DEBS: DEBS’17. ACM Press, New York City (NY), USA, pp 349–350Google Scholar
  17. Ollesch J, Hesenius M, Gruhn V, Alias C (2018) Real-time Event Processing for Smart Logistics Networks. submitted for publication. In: Proff H, Fojcik TM (eds) Mobility and Digital Transformation: Challenges and Future Paths. Tagungsband des 9. Wissenschaftsforum Mobilität an der Universität Duisburg-Essen. Springer Gabler, Wiesbaden, Germany (submitted for public.)CrossRefGoogle Scholar
  18. Patri OP, Sorathia VS, Panangadan AV, Prasanna VK (2014) The process-oriented event model (PoEM). In: Bellur U, Kothari R (eds) Proceedings of the 8th ACM International Conference on DEBS: DEBS’14. ACM Press, New York City (NY), USA, pp 154–165Google Scholar
  19. Prasse C, Nettstraeter A, Hompel Mt (2014) How IoT will change the design and operation of logistics systems. In: 2014 International Conference on the Internet of Things (IOT). IEEE, Piscataway (NJ), USA, pp 55–60Google Scholar
  20. Rialland A (2011) D2.2 High Level Specification of Use Case Scenarios: FInest – Future Internet enabled optimisation of transport and logistics networks. Project Deliverable.Google Scholar
  21. Rialland A (2012) D2.5 Final use case specification and Phase 2 experimentation plan: FInest – Future Internet enabled optimisation of transport and logistics networks. Project Deliverable.Google Scholar
  22. Rialland A, Alias C (2012) D2.4 Initial Experimentation Specification and Evaluation Methodologies for Selected Use Case Scenarios: FInest – Future Internet enabled optimisation of transport and logistics networks. Project Deliverable.Google Scholar
  23. Rialland A, Ramstad LS (2012) D2.3 Detailed Specification of Use Case Scenarios: FInest – Future Internet enabled optimisation of transport and logistics networks. Project Deliverable.Google Scholar
  24. Schulze U (2009) Informationstechnologieeinsatz im Supply Chain Management: Eine konzeptionelle und empirische Untersuchung zu Nutzenwirkungen und Nutzenmessung. Schriften des Kühne-Zentrums für Logistikmanagement. Gabler Verlag / GWV Fachverlage GmbH, Wies-baden, GermanyCrossRefGoogle Scholar
  25. Seitz K-F, Nyhuis P (2015) Cyber-Physical Production Systems Combined with Logistic Models – A Learning Factory Concept for an Improved Production Planning and Control: A Learning Factory Concept for an Improved Production Planning and Control. Procedia CIRP 32:92–97. Scholar
  26. Straube F Smarte Logistik: Hebel der Digitalisierung. Accessed 28 August 2017
  27. Uckelmann D (2008) A Definition Approach to Smart Logistics. In: Hutchison D, Balandin S, Kanade T, Kittler J, Kleinberg JM, Koucheryavy Y, Mattern F, Mitchell JC, Moltchanov D, Naor M, Nierstrasz O (eds) Next Generation Teletraffic and Wired/Wireless Advanced Net-working: 8th International Conference NEW2AN and 1st Russian Conference on Smart Spaces, ruSMART 2008. Springer, Berlin/Heidelberg, Germany, pp 273–284Google Scholar
  28. van Woensel T (2012) Smart logistics. Inaugural lecture, Eindhoven, The NetherlandsGoogle Scholar
  29. Veigt M, Lappe D, Hribernik KA, Scholz-Reiter B (2013) Entwicklung eines Cyber-Physischen Logistiksystems. Industrie Management 2013:15–18Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • C. Alias
    • 1
    Email author
  • M. Zahlmann
    • 2
  • F. E. Alarcón Olalla
    • 3
  • H. Iwersen
    • 1
  • B. Noche
    • 1
  1. 1.Universität Duisburg-EssenDuisburgDeutschland
  2. 2.Kühne + Nagel (AG & Co.) KGDuisburgDeutschland
  3. 3.Universidad Politécnica Estatal del CarchiTulcánEcuador

Personalised recommendations