Advertisement

Respiratory Deformation Estimation in X-Ray-Guided IMRT Using a Bilinear Model

  • Tobias GeimerEmail author
  • Stefan B. Ploner
  • Paul Keall
  • Christoph Bert
  • Andreas Maier
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

Driving a respiratory motion model in X-ray guided radiotherapy can be challenging in treatments with continuous rotation such as VMAT, as data-driven respiratory signal extraction suffers from angular effects overlapping with respiratory changes in the projection images. Compared to a linear model trained on static acquisition angles, the bilinear model gains flexibility in terms of handling multiple viewpoints at the cost of accuracy. In this paper, we evaluate both models in the context of serving as the surrogate input to a motion model. Evaluation is performed on the 20 patient 4D CTs in a leave-one-phase-out approach yielding a median accuracy drop of only 0:14mm in the 3D error of estimated vector fields of the bilinear model compared to the linear one.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Akimoto M, Nakamura M, Miyabe Y, et al. Long-term stability assessment of a 4D tumor tracking system integrated into a gimbaled linear accelerator. J Appl Clin Med Phys. 2015;16(5):373-380.CrossRefGoogle Scholar
  2. 2.
    McClelland JR, Hawkes DJ, Schaeffter T, et al. Respiratory motion models: a review. Med Image Anal. 2013;17(1):19-42.CrossRefGoogle Scholar
  3. 3.
    Yan H, Wang X, Yin W, et al. Extracting respiratory signals from thoracic cone beam CT projections. Phys Med Biol. 2013;58(5):1447-64.CrossRefGoogle Scholar
  4. 4.
    Fischer P, Pohl T, Faranesh A, et al. Unsupervised learning for robust respiratory signal estimation from X-Ray uoroscopy. IEEE Trans Med Imaging. 2017;36(4):865-877.CrossRefGoogle Scholar
  5. 5.
    Geimer T, Keall P, Breininger L, et al. Decoupling respiratory and angular variation in rotational X-ray scans using a prior bilinear Mmdel. Proc GCPR. 2018; p. 1-12.Google Scholar
  6. 6.
    Wilms M, Werner R, Ehrhardt J, et al. Multivariate regression approaches for surrogate-based diffeomorphic estimation of respiratory motion in radiation therapy. Phys Med Biol. 2014;59(5):1147-1164.CrossRefGoogle Scholar
  7. 7.
    De Lathauwer L, De Moor B, Vandewalle J. A multilinear singular value decomposition. SIAM J Matrix Anal Appl. 2000;21(4):1253-1278.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Tobias Geimer
    • 1
    • 2
    • 3
    Email author
  • Stefan B. Ploner
    • 1
  • Paul Keall
    • 4
  • Christoph Bert
    • 2
    • 3
  • Andreas Maier
    • 1
    • 2
  1. 1.Pattern Recognition LabFriedrich-Alexander-Universität Erlangen-NürnbergErlangenDeutschland
  2. 2.Erlangen Graduate School of Advanced Optical Technologies, FAU ER-NErlangenDeutschland
  3. 3.Department of Radiation OncologyUniversitätklinikum Erlangen, FAU ER-NErlangenDeutschland
  4. 4.ACRF Image X InstituteThe University of SydneySydneyAustralien

Personalised recommendations