Advertisement

MedicVR

Acceleration and Enhancement Techniques for Direct Volume Rendering in Virtual Reality
  • Ingrid SchollEmail author
  • Alex Bartella
  • Cem Moluluo
  • Berat Ertural
  • Frederic Laing
  • Sebastian Suder
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

Further developments of the medical virtual reality application MedicVR were achieved by new approaches to direct volume rendering with the HTC Vive head mounted display. Even though the necessary real-time performance for a smooth interactive experience is accomplished by the shader technologies, the rendered image quality and performance is influenced by several parameters. We propose in this paper multiple technological upgrades to our application including: Lens Matched Shading, interactive volume clipping, semi-adaptive sampling, global illumination in direct volume rendering with shadow rays as well as an optimisation method for shadow rays and multiple light source integration. The quality of the rendered images is increased while keeping impact on performance at minimal levels. The application is currently used in study and planning in the field of dentofacial surgery.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Engel K, Hadwiger M, Kniss J, et al. Real-time volume graphics. CRC Press; 2006.Google Scholar
  2. 2.
    Hänel C, Weyers B, Hentschel B, et al.; IEEE. Interactive volume rendering for immersive virtual environments. IEEE VIS Int Workshop 3DVis. 2014; p. 73-74.Google Scholar
  3. 3.
    Mastmeyer A, Fortmeier D, Handels H. Direct haptic volume rendering in lumbar puncture simulation. Med Meet Virtual Real 19: NextMed. 2012;173:280-286.Google Scholar
  4. 4.
    Fortmeier D, Mastmeyer A, Schröder J, et al. A virtual reality system for PTCD simulation using direct visuo-haptic rendering of partially segmented image data. IEEE J Biomed Health Inform. 2016;20(1):355-366.CrossRefGoogle Scholar
  5. 5.
    Scholl I, Suder S, Schiffer S. Direct volume rendering in virtual reality. Procs BVM. 2018; p. 297-302.Google Scholar
  6. 6.
    Edward L. Lens matched shading and unreal engine 4 integration Ppart 1; 2018. [Accessed 26-10-2018]. [Online]. Available from: https://developer.nvidia.com/lensmatched-shading-and-unreal-engine-4-integration-part-1.
  7. 7.
    Levoy M. Display of surfaces from volume data. IEEE Comput Graph Appl. 1988;(3):29-30.CrossRefGoogle Scholar
  8. 8.
    Ropinski T, Kasten J, Hinrichs. Efficient shadows for GPU-based volume raycasting. WSCG Full Pap. 2008; p. 17-24.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Ingrid Scholl
    • 1
    Email author
  • Alex Bartella
    • 2
  • Cem Moluluo
    • 1
  • Berat Ertural
    • 1
  • Frederic Laing
    • 1
  • Sebastian Suder
    • 1
  1. 1.MASCOR InstituteFH AachenAachenDeutschland
  2. 2.Clinic for Oral and Maxillofacial SurgeryUniklinik RWTH AachenAachenDeutschland

Personalised recommendations