Advertisement

Prediction of Liver Function Based on DCE-CT

  • Oliver RippelEmail author
  • Daniel Truhn
  • Johannes Thüring
  • Christoph Haarburger
  • Christiane K. Kuhl
  • Dorit Merhof
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

Liver function analysis is crucial for staging and treating chronic liver diseases (CLD). Despite CLD being one of the most prevalent diseases of our time, research regarding liver in the Medical Image Computing community is often focused on diagnosing and treating CLD’s long term effects such as the occurance of malignancies, e.g. hepatocellular carcinoma. The Child-Pugh (CP) score is a surrogate for liver function used to quantify liver cirrhosis, a common CLD, and consists of 3 disease progression stages A, B and C. While a correlation between CP and liver specific contrast agent uptake for dynamic conrast enhanced (DCE)-MRI has been found, no such correlation has been shown for DCE-CT scans, which are more commonly used in clinical practice. Using a transfer learning approach, we train a CNN for prediction of CP based on DCE-CT images of the liver alone. Agreement between the achieved CNN based scoring and ground truth CP scores is statistically significant, and a rank correlation of 0.43, similar to what is reported for DCE-MRI, was found. Subsequently, a statistically significant CP classifier with an overall accuracy of 0.57 was formed by employing clinically used cutoff values.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Suk KT, Kim MY, Baik SK. Alcoholic liver disease: treatment. World J Gastroenterol. 2014;20(36):12934–12944.CrossRefGoogle Scholar
  2. 2.
    Kortgen A, Recknagel P, Bauer M. How to assess liver function? Curr Opin Crit Care. 2010;16(2):136–141.CrossRefGoogle Scholar
  3. 3.
    Pugh R,Murray-Lyon I, Dawson J, et al. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg. 1973;60(8):646–649.CrossRefGoogle Scholar
  4. 4.
    Rowe IA. Lessons from epidemiology: the burden of liver disease. Dig Dis. 2017;35(4):304–309.CrossRefGoogle Scholar
  5. 5.
    Motosugi U, Ichikawa T, Sou H, et al. Liver parenchymal enhancement of hepatocyte-phase images in Gd-EOB-DTPA-enhanced MR imaging: which biological markers of the liver function affect the enhancement? J Magn Reson Imaging. 2009;30(5):1042–1046.CrossRefGoogle Scholar
  6. 6.
    Verloh N, Haimerl M, Rennert J, et al. Impact of liver cirrhosis on liver enhancement at Gd-EOB-DTPA enhanced MRI at 3 tesla. Eur J Radiol. 2013;82(10):1710–1715.CrossRefGoogle Scholar
  7. 7.
    Tamada T, Ito K, Higaki A, et al. Gd-EOB-DTPA-enhanced MR imaging: evaluation of hepatic enhancement effects in normal and cirrhotic livers. Eur J Radiol. 2011;80(3):e311–e316.CrossRefGoogle Scholar
  8. 8.
    Yasaka K, Akai H, Kunimatsu A, et al. Liver fibrosis: deep convolutional neural network for staging by using gadoxetic acid-enhanced hepatobiliary phase MR images. Radiol. 2017;287(1):146–155.CrossRefGoogle Scholar
  9. 9.
    Marstal K, Berendsen F, Staring M, et al. SimpleElastix: a user-friendly, multilingual library for medical image registration. Proc CVPR. 2016;.Google Scholar
  10. 10.
    He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. Proc CVPR. 2016; p. 770–778.Google Scholar
  11. 11.
    Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hierarchical image database. Proc CVPR. 2009; p. 248–255.Google Scholar
  12. 12.
    Tajbakhsh N, Shin JY, Gurudu SR, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging. 2016;35(5):1299–1312.CrossRefGoogle Scholar
  13. 13.
    Kendall MG. The treatment of ties in ranking problems. Biometrika. 1945;33(3):239–251.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Haarburger C, Langenberg P, Truhn D, et al. Transfer learning for breast cancer malignancy classification based on dynamic contrast-enhanced MR images. Proc BVM. 2018; p. 216–221.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Oliver Rippel
    • 1
    Email author
  • Daniel Truhn
    • 2
  • Johannes Thüring
    • 2
  • Christoph Haarburger
    • 1
  • Christiane K. Kuhl
    • 2
  • Dorit Merhof
    • 1
  1. 1.Institute of Imaging & Computer VisionRWTH Aachen UniversityAachenDeutschland
  2. 2.Department of Diagnostic and Interventional RadiologyUniversity Hospital AachenAachenDeutschland

Personalised recommendations