Advertisement

Hochtemperaturlegierungen

  • Hans Jürgen Maier
  • Thomas Niendorf
  • Ralf Bürgel
Chapter

Zusammenfassung

Zu den Hochtemperaturwerkstoffen werden alle Materialien gezählt, die oberhalb von rund 500 °C dauerhaft für Bauteile eingesetzt werden können und damit langzeitig ausreichende mechanische Eigenschaften und Hochtemperatur-Korrosionsbeständigkeit aufweisen müssen. Dafür kommen metallische und keramische Werkstoffe infrage sowie intermetallische Phasen, welche eine Stellung zwischen den Metallen und den Keramiken einnehmen.

Die Anwendungen der Hochtemperaturwerkstoffe erstrecken sich im Wesentlichen auf folgende Bereiche:
  • Energietechnik

    Dampf- und Gasturbinen, Dampfkessel, Hochtemperatur-Reaktorbau (Kernreaktoren mit Betriebsmitteltemperaturen oberhalb etwa 500 °C), Wärmetauscher und Hochtemperaturrohrleitungen, Ofenbau und Heiztechnik, Beleuchtungstechnik

  • Antriebstechnik

    Flugtriebwerksbau und Motorenbau

  • Chemische Industrie

    Hochtemperaturverfahren zur Herstellung chemischer Produkte (z. B. die Ammoniak-Synthese), Hochtemperaturpyrolyse (thermische Zersetzung chemischer Verbindungen, wie z. B. in der Petrolchemie das Spalten von C-H-Verbindungen oder die Müllverbrennung), Kohleveredlungstechniken, Wasserstofferzeugung und Synthesegasherstellung durch Sonnenenergie

  • Hüttentechnik und Maschinenbau

    Prozesse der Metallurgie und des Glasschmelzens sowie anderer Verfahren zur Rohstoffgewinnung und -verarbeitung, Hochtemperatur-Werkzeugbau.

Literatur

  1. 1.
    T.B. Massalski (Hrsg.): Binary Alloys Phase Diagrams. ASM International, Materials Park/Ohio (1990)Google Scholar
  2. 2.
    J. Falke, M. Regitz (Hrsg.): Römpp Chemie-Lexikon. Georg Thieme Verlag, Stuttgart (1990)Google Scholar
  3. 3.
    G.R. Wallwork: The Oxidation of Alloys. Rep. Prog. Phys. 39, 401–485 (1976)Google Scholar
  4. 4.
    Stahlinstitut VDEh (Hrsg.): Stahl-Eisen-Liste, 11. Aufl. Stahleisen-Verlag, Düsseldorf (2004)Google Scholar
  5. 5.
    M.J. Bennett, D.P. Moon: Effect of active elements on the oxidation behaviour of Cr2O3-formers. In: E. Lang (Hrsg.) The Role of Active Elements in the Oxidation Behaviour of High Temperature Metals and Alloys, S. 111–129. Elsevier Appl. Sci., London (1989)Google Scholar
  6. 6.
    J. Glen: Effect of alloying elements on the high-temperature tensile strength of normalized low-carbon steel. J. Iron Steel Inst. 186, 21–48 (1957)Google Scholar
  7. 7.
    A. Rahmel: Beitrag zur Frage des Zunderverhaltens von Kesselbaustählen. Mitt. VGB, 74, 319–332 (1961)Google Scholar
  8. 8.
    H. Naoi, M. Ohgami, Y. Hasegawa, T. Fujita: Mechanical properties of 12Cr-W-Co ferritic steels with high creep rupture strength. In: D. Coutsouradis, J.H. Davidson, J. Ewald, P. Greenfield, T. Khan, M. Malik, D.B. Meadowcroft, V. Regis, R.B. Scarlin, F. Schubert, D.V. Thornton (Hrsg.) Materials for Advanced Power Engineering 1994, Part I, S. 425–434. Kluwer Academic Publ., Dordrecht (1994)Google Scholar
  9. 9.
    J.H. Davidson et al.: The development of oxidation-resistant Fe-Ni-Cr-Al alloys for use at temperatures up to 1300 °C. In: I. Kirman et al. (Hrsg.) Behaviour of High Temperature Alloys in Aggressive Environments, S. 209–224. Proc. Int. Conf. Petten/The Netherlands, 15–18 Oct. 1979. The Metals Society, London (1980)Google Scholar
  10. 10.
    Y. Mishima, S. Ochiai, T. Suzuki: Lattice parameters of Ni(γ), Ni3Al(\( {\upgamma}^{\prime } \)) and Ni3Ga(\( {\upgamma}^{\prime } \)) solid solutions with additions of transition and B-subgroup elements. Acta Metall. 33, 1161–1169 (1985)Google Scholar
  11. 11.
    D.R. Coupland, C.W. Hall, I.R. McGill: Platinum-enriched superalloys. Platinum Met. Rev. 26, 146–157 (1982)Google Scholar
  12. 12.
    G. Frank: Mikrostrukturelle Ursachen des Negativen Kriechens von gegossenen Superlegierungen. Dissertation, Universität Erlangen-Nürnberg (1990)Google Scholar
  13. 13.
    T.M. Pollock, A.S. Argon: Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates. Acta Metall. Mater. 42, 1859–1874 (1994)Google Scholar
  14. 14.
    L. Müller, T. Link, M. Feller-Kniepmeier: Temperature dependence of the thermal lattice mismatch in a single crystal nickel-base superalloy measured by neutron diffraction. Scr. Metall. Mater. 26, 1297–1302 (1992)Google Scholar
  15. 15.
    H. Biermann: Röntgenographische Bestimmung von inneren Spannungen in der Nickelbasis-Superlegierung SRR 99. Fortschr.-Ber. VDI, Reihe 5, Nr. 325, S. 64. VDI-Verlag, Düsseldorf (1993)Google Scholar
  16. 16.
    L.R. Woodyatt, C.T. Sims, H.J. Beattie Jr.: Prediction of sigma-type phase occurence from compositions in austenitic superalloys. Trans. Met. Soc. AIME 236, 519–527 (1966)Google Scholar
  17. 17.
    L. Pauling: The nature of the interatomic forces in metals. Phys. Rev. 54, 899–904 (1938)Google Scholar
  18. 18.
    L. Darken, R.W. Gurry: Physical Chemistry of Metals, S. 86. McGraw-Hill, New York (1953)Google Scholar
  19. 19.
    M. Morinaga, N. Yukawa, H. Ezaki, H. Adachi: Solid solubilities in transition-metal-based F.C.C. alloys. Phil. Mag. A 51, 223–246 (1985)Google Scholar
  20. 20.
    M. Morinaga, N. Yukawa, H. Ezaki, H. Adachi: Solid solubilities in nickel-based F.C.C. alloys. Phil. Mag. A 51, 247–252 (1985)CrossRefGoogle Scholar
  21. 21.
    K. Matsugi, Y. Murata, M. Morinaga, N. Yukawa: Realistic advancement for nickel-based single crystal superalloys by the d-electrons concept. In: S.D. Antolovich et al. (Hrsg.) Superalloys 1992, S. 307–316. Proc. 7th Int. Symp. on Superalloys, Seven Springs/Pa. The Minerals, Metals & Materials Society, Warrendale/Pa. (1992)Google Scholar
  22. 22.
    Structures of Nimonic Alloys. Henry Wiggin & Comp., Publication 3563 (1974)Google Scholar
  23. 23.
    A.K. Koul, R. Thamburaj: Serrated grain boundary formation potential of Ni-based superalloys and its implications. Metall. Trans. 16A, 17–26 (1985)Google Scholar
  24. 24.
    U. Oestern: Diplomarbeit, FH Osnabrück (1994)Google Scholar
  25. 25.
    R. Weigelt: Diplomarbeit, FH Osnabrück (1995)Google Scholar
  26. 26.
    A.K. Koul, D.D. Morphy: Serrated grain boundary formation in nickel-base superalloys. Microstruct. Sci. 11, 79–88 (1983)Google Scholar
  27. 27.
    A.K. Koul, G.H. Gessinger: On the mechanism of serrated grain boundary formation in Ni-based superalloys. Acta Metall. 31, 1061–1069 (1983)Google Scholar
  28. 28.
    H. Loyer Danflou, M. Macia, T.H. Sanders, T. Khan: Mechanisms of formation of serrated grain boundaries in nickel-base superalloys. In: R.D. Kissinger et al. (Hrsg.) Superalloys 1996, S. 119–127. Proc. 8th Int. Symp. on Superalloys, Seven Springs/Pa. The Minerals, Metals & Materials Society, Warrendale/Pa. (1996)Google Scholar
  29. 29.
    R. Bürgel: Beitrag zum Ringversuch zur quantitativen Gefügecharakterisierung einer einkristallinen Nickelbasis-Superlegierung, 2002, unveröffentlichtGoogle Scholar
  30. 30.
    M. McLean: Directionally Solidified Materials for High Temperature Service. The Metals Society, London (1983)Google Scholar
  31. 31.
    T.M. Pollock et al.: Grain defect formation during directional solidification of nickel base single crystals. in: S.D. Antolovich et al. (Hrsg.) Superalloys 1992, S. 125–134. Proc. 7th Int. Symp. on Superalloys, Seven Springs/Pa.. The Minerals, Metals & Materials Society, Warrendale/Pa. (1992)Google Scholar
  32. 32.
    A.F. Giamei, B.H. Kear: On the nature of freckles in nickel base superalloys. Metall. Trans. 1A, 2185–2192 (1970)Google Scholar
  33. 33.
    S.M. Copley, A.F. Giamei, S.M. Johnson, M.F. Hornbecker: The origin of freckles in unidirectionally solidified castings. Metall. Trans. 1A, 2193–2204 (1970)Google Scholar
  34. 34.
    D. Goldschmidt: Einkristalline Gasturbinenschaufeln aus Nickelbasis-Legierungen. Mat.-wiss. u. Werkstofftech. 25, 311–320 (1994)Google Scholar
  35. 35.
    A. Lohmüller, W. Eßer, J. Großmann, M. Hördler, J. Preuhs, R.F. Singer: Improved quality and economics of investment castings by liquid metal cooling – The selection of cooling media. In: T.M. Pollock et al. (Hrsg.) Superalloys 2000, S. 181–188. Proc. 9th Int. Symp. on Superalloys, Seven Springs/Pa. The Minerals, Metals & Materials Society, Warrendale/Pa. (2000)Google Scholar
  36. 36.
    M.A. Taha, W. Kurz: About microsegregation of nickel base superalloys. Z. Metallkd. 72, 546–549 (1981)Google Scholar
  37. 37.
    D. Ma, P.R. Sahm: Einkristallerstarrung der Ni-Basis-Superlegierung SRR99, Teil 2: Mikroseigerungsverhalten der Legierungselemente. Z. Metallkd. 87, 634–639 (1996)Google Scholar
  38. 38.
    W.S. Walston, J.C. Schaeffer, W.H. Murphy: A new type of microstructural instability in superalloys – SRZ. In: R.D. Kissinger et al. (Hrsg.) Superalloys 1996, S. 9–18. Proc. 8th Int. Symp. on Superalloys, Seven Springs/Pa. The Minerals, Metals & Materials Society, Warrendale/Pa. (1996)Google Scholar
  39. 39.
    E.W. Ross, K.S. O‘Hara: René N4: A first generation single crystal turbine airfoil alloy with improved oxidation resistance, low angle boundary strength and superior long time rupture strength. In: R.D. Kissinger et al. (Hrsg.) Superalloys 1996, S. 19–25. Proc. 8th Int. Symp. on Superalloys, Seven Springs/Pa. The Minerals, Metals & Materials Society, Warrendale/Pa. (1996)Google Scholar
  40. 40.
    M. Konter, E. Kats, N. Hofmann: A novel casting process for single crystal gas turbine components. In: T.M. Pollock et al. (Hrsg.) Superalloys 2000, S. 189–200. Proc. 9th Int. Symp. on Superalloys, Seven Springs/Pa. The Minerals, Metals & Materials Society, Warrendale/Pa. (2000)Google Scholar
  41. 41.
    V. Sass, U. Glatzel, M. Feller-Kniepmeier: Creep anisotropy in the monocrystalline nickel-base superalloy CMSX-4. In: R.D. Kissinger et al. (Hrsg.) Superalloys 1996, S. 283–290. Proc. 8th Int. Symp. on Superalloys, Seven Springs/Pa. The Minerals, Metals & Materials Society, Warrendale/Pa. (1996)Google Scholar
  42. 42.
    Y. Kondo et al.: Effect of morphology of \( {\upgamma}^{\prime } \) phase on creep resistance of a single crystal nickel-based superalloy CMSX-4. In: R.D. Kissinger et al. (Hrsg.) Superalloys 1996, S. 297–304. Proc. 8th Int. Symp. on Superalloys, Seven Springs/Pa. The Minerals, Metals & Materials Society, Warrendale/Pa. (1996)Google Scholar
  43. 43.
    Introducing Mechanical Alloying. Huntington Alloys, Broschüre 77-310Google Scholar
  44. 44.
    G.F. Hüttig: Experimentelle Grundlagen des Begriffes „Mahlungsgleichgewicht“. Z. Metallkd. 48, 352–356 (1957)Google Scholar
  45. 45.
    C.P. Jongenburger: Secondary Recrystallisation in Oxide-Dispersion Strengthened Nickel-Base Alloys, Thèse No. 773. École Polytechnique Fédérale de Lausanne/Schweiz (1988)Google Scholar
  46. 46.
    C. Jongenburger, R.F. Singer: Recrystallization of ODS superalloys. In: E. Arzt, L. Schultz (Hrsg.) New Materials by Mechanical Alloying Techniques. S. 157–174. DGM Conf. Calw-Hirsau (FRG), 1988. DGM Informationsgesellschaft Verlag, Oberursel (1989)Google Scholar
  47. 47.
    J.D. Whittenberger: Properties of oxide dispersion strengthened alloys. In: E. Arzt, L. Schultz (Hrsg.) New Materials by Mechanical Alloying Techniques, S. 201–215. DGM Conf. Calw-Hirsau (FRG), 1988. DGM Informationsgesellschaft Verlag, Oberursel (1989)Google Scholar
  48. 48.
    R.A. Testin, B.A. Ewing, J.A. Spees: A high performance austenitic ODS superalloy sheet for advanced gas turbine applications. In: S.D. Antolovich et al. (Hrsg.) Superalloys 1992, S. 83–92. Proc. 7th Int. Symp. on Superalloys, Seven Springs/Pa. The Minerals, Metals & Materials Society, Warrendale/Pa. (1992)Google Scholar
  49. 49.
    R. Bürgel, B. Trück: unveröffentl. Ergebnisse. Brown Boveri & Cie. Mannheim (1983)Google Scholar
  50. 50.
    L. E. Murr et al.: Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 28, 1–14 (2012)CrossRefGoogle Scholar
  51. 51.
    M. Schmidt et al.: Laser based additive manufacturing in industry and academia. CIRP Ann. 66, 561–583 (2017)CrossRefGoogle Scholar
  52. 52.
    D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann: Additive manufacturing of metals. Acta Mater. 117, 371–392 (2016)CrossRefGoogle Scholar
  53. 53.
    H. Bikas, P. Stavropoulos, G. Chryssolouris: Additive manufacturing methods and modelling approaches: a critical review. Int. J. Adv. Manuf. Technol. 83, 389–405 (2016)CrossRefGoogle Scholar
  54. 54.
    W. E. Frazier: Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23, 1917–1928 (2014)CrossRefGoogle Scholar
  55. 55.
    G. Adam, E. Klemp, T. Niendorf, H.-J. Schmid: Praxishandbuch Additive Fertigung. Springer, Berlin, In BegutachtungGoogle Scholar
  56. 56.
    E. Sachs, E. Wylonis, S. Allen, M. Cima, H. Guo: Production of injection molding tooling with conformal cooling channels using the three dimensional printing process. Polym. Eng. Sci. 40, 1232–1247 (2000)CrossRefGoogle Scholar
  57. 57.
    A. Armillotta, R. Baraggi, S. Fasoli: SLM tooling for die casting with conformal cooling channels. Int. J. Adv. Manuf. Technol. 71, 573–583 (2014)CrossRefGoogle Scholar
  58. 58.
    M. M. Kirka, P. Nandwana, Y. Lee, R. R. Dehoff: Solidification and solid-state transformation sciences in metals additive manufacturing. Scr. Mater. 135, 130–134 (2017)CrossRefGoogle Scholar
  59. 59.
    V. Manvatkar, A. De, T. DebRoy: Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process. Mater. Sci. Technol. 31, 924–930 (2015)CrossRefGoogle Scholar
  60. 60.
    C. Körner: Additive manufacturing of metallic components by selective electron beam melting – a review. Int. Mater. Rev. 61, 361–377 (2016)CrossRefGoogle Scholar
  61. 61.
    J. Günther et al.: On the effect of internal channels and surface roughness on the high-cycle fatigue performance of Ti-6Al-4V processed by SLM. Mater. Des., 143, 2018, 1–11Google Scholar
  62. 62.
    R. Acharya, S. Das: Additive manufacturing of IN100 superalloy through scanning laser epitaxy for turbine engine hot-section component repair: process development, modeling, microstructural characterization, and process control. Metall. Mater. Trans. A 46, 3864–3875 (2015)CrossRefGoogle Scholar
  63. 63.
    S. Kou: Welding metallurgy. Wiley-Interscience (2003)Google Scholar
  64. 64.
    M. Pröbstle et al.: Superior creep strength of a nickel-based superalloy produced by selective laser melting. Mater. Sci. Eng. A 674, 299–307 (2016)CrossRefGoogle Scholar
  65. 65.
    J. Chen, D. Schwarze, T. Niendorf: Single crystal microstructure built by Selective Laser Melting (SLM). In: Proceeding of Lasers in Manufacturing Conference (2017)Google Scholar
  66. 66.
    L. A. Al-Juboori, T. Niendorf, F. Brenne: On the tensile properties of Inconel 718 fabricated by EBM for as-built and heat-treated components. Metall. Mater. Trans. B (2018).  https://doi.org/10.1007/s11663-018-1407-4
  67. 67.
    C. Körner, H. Helmer, A. Bauereiß, R. F. Singer: Tailoring the grain structure of IN718 during selective electron beam melting. MATEC Web Conf. 14, 08001 (2014)CrossRefGoogle Scholar
  68. 68.
    H. Helmer, A. Bauereiß, R. F. Singer, C. Körner: Grain structure evolution in Inconel 718 during selective electron beam melting. Mater. Sci. Eng. A 668, 180–187 (2016)CrossRefGoogle Scholar
  69. 69.
    T. Wegener, J. Günther, F. Brenne, T. Niendorf: Direct microstructure design and process induced imperfections in additive manufacturing – on the low-cycle fatigue behavior of electron beam melted Inconel 718 superalloy. In: ASTM International, STP: Selected Technical Papers (2019), zur Veröffentlichung angenommenGoogle Scholar
  70. 70.
    F. Brenne et al.: Microstructural design of Ni-base alloys for high-temperature applications: impact of heat treatment on microstructure and mechanical properties after selective laser melting. Prog. Addit. Manuf. 1, 141–151 (2016)CrossRefGoogle Scholar
  71. 71.
    F. Brenne, S. Leuders, T. Niendorf: On the impact of additive manufacturing on microstructural and mechanical properties of stainless steel and Ni-base alloys. BHM Berg- Hüttenmänn. Monatshefte 162, 199–202 (2017)CrossRefGoogle Scholar
  72. 72.
    G. Lindwall et al. Simulation of TTT curves for additively manufactured Inconel 625. Metall. Mater. Trans. A (2018).  https://doi.org/10.1007/s11661-018-4959-7
  73. 73.
    P. Kanagarajah, F. Brenne, T. Niendorf, H. J. Maier: Inconel 939 processed by selective laser melting: effect of microstructure and temperature on the mechanical properties under static and cyclic loading. Mater. Sci. Eng. A 588, 188–195 (2013)CrossRefGoogle Scholar
  74. 74.
    M. E. Aydinöz et al.: IN 718 processed by selective laser melting: effect of precipitation hardening and hot isostat-ic pressing on the low-cycle fatigue behavior at 650 °C. In: Proceeding of DVM, 1. Tagung Arbeitskreis Additiv gefertigte Bauteile und Strukturen 141–150 (2016)Google Scholar
  75. 75.
    J. Günther et al.: Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime. Int. J. Fatigue (2016).  https://doi.org/10.1016/j.ijfatigue.2016.05.018
  76. 76.
    S. Tammas-Williams, P. J. Withers, I. Todd, P. B. Prangnell: Porosity regrowth during heat treatment of hot isostatically pressed additively manufactured titanium components. Scr. Mater. 122, 72–76 (2016)CrossRefGoogle Scholar
  77. 77.
    M. E. Aydinöz et al.: On the microstructural and mechanical properties of post-treated additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading. Mater. Sci. Eng. A 669, 246–258 (2016)CrossRefGoogle Scholar
  78. 78.
    W. Jakobeit: PM Mo-TZM Turbine blades – Demands on mechanical properties. Int. J. Refract Hard Met. 2, 133–136 (1983)Google Scholar
  79. 79.
    C.S. Barrett, T.B. Massalski: Structure of Metals. McGraw-Hill, New York (1966)Google Scholar
  80. 80.
    M.H. Yoo et al.: Deformation and fracture of intermetallics, Overview No. 105. Acta Metall. Mater. 41, 987–1002 (1993)Google Scholar
  81. 81.
    G. Sauthoff: Intermetallics. VCH, Weinheim (1995)Google Scholar
  82. 82.
    D.B. Miracle: The physical and mechanical properties of NiAl, Overview No. 104. Acta Metall. Mater., 41, 649–684 (1993)Google Scholar
  83. 83.
    R. Darolia, W.S. Walston, M.V. Nathal: NiAl alloys for turbine airfoils. In: R.D. Kissinger et al. (Hrsg.) Superalloys 1996, S. 561–570. Proc. 8th Int. Symp. on Superalloys, Seven Springs/Pa. The Minerals, Metals & Materials Society, Warrendale/Pa. (1996)Google Scholar
  84. 84.
    C.M. Austin, T.J. Kelly: Gas turbine engine implementation of gamma titanium aluminide. In: R.D. Kissinger et al. (Hrsg.) Superalloys 1996, S. 539–543. Proc. 8th Int. Symp. on Superalloys, Seven Springs/Pa. The Minerals, Metals & Materials Society, Warrendale/Pa. (1996)Google Scholar
  85. 85.
    Y.-W. Kim: Ordered intermetallic alloys, Part III: Gamma titanium aluminides. J. Met. 46, No. 7, 30–39 (1994)Google Scholar
  86. 86.
    F.H. Froes, C. Suryanarayana, D. Eliezer: Review: Synthesis, properties and applications of titanium aluminides. J. Mater. Sci. 27, 5113–5140 (1992)Google Scholar
  87. 87.
    Werkstoffe u. Korr. 48, 1–78 (gesamtes Heft 1/97) (1997)Google Scholar
  88. 88.
    F.H. Froes, C. Suryanarayana, D. Eliezer: Review: Synthesis, properties and applications of titanium aluminides. J. Mater. Sci. 27, 5113–5140 (1992)Google Scholar
  89. 89.
    D.M. Shah: MoSi2 and other silicides as high temperature structural materials. In: S.D. Antolovich et al. (Hrsg.) Superalloys 1992, S. 409–422. Proc. 7th Int. Symp. on Superalloys, Seven Springs/Pa. The Minerals, Metals & Materials Society, Warrendale/Pa. (1992)Google Scholar
  90. 90.
    E. Drost, H. Gölitzer, M. Poniatowski, S. Zeuner: Platinwerkstoffe für Hochtemperatur-Einsatz. Metall 50, 492–498 (1996)Google Scholar
  91. 91.
    R.T. Holt, W. Wallace: Impurities and trace elements in nickel-base superalloys. Int. Metals Review 21, 1–24 (1976)Google Scholar
  92. 92.
    M. Kohno, M. Miyakawa, S. Kinoshita, A. Suzuki: Effect of chemical composition on properties of high purity 3.5NiCrMoV steel forging. In: Conf. on Advances in Materials for Fossil Power Plants, Chicago/IL. Am. Soc. Metals ASM, 81–88Google Scholar
  93. 93.
    Met. Technol. 11, gesamtes Oktober-Heft (1984)Google Scholar
  94. 94.
    M. McLean, A. Strang: Effects of trace elements on mechanical properties of superalloys. Met. Technol. 11, 454–464 (1984)Google Scholar
  95. 95.
    C.H. White, P.M. Williams, M. Morley: Cleaner superalloys via improved melting practices. Advanced Mat. Proc. 137, April, 53–57 (1990)Google Scholar
  96. 96.
    N.A. Waterman, M.F. Ashby (Hrsg.): Elsevier Materials Selector, Bd. 2. Elsevier, London (1991)Google Scholar
  97. 97.
    M.V. Nathal, S.R. Levine: Development of alternative engine materials. In: S.D. Antolovich et al. (Hrsg.) Superalloys 1992, S. 329–340. Proc. 7th Int. Symp. on Superalloys, Seven Springs/Pa. The Minerals, Metals & Materials Society, Warrendale/Pa. (1992)Google Scholar
  98. 98.
    K. Komeya, M. Matsui: High temperature engineering ceramics. In: R.W. Cahn, P. Haasen, E.J. Kramer (Hrsg.) Materials Science and Technology, Bd. 11, S. 517–565 M.V. Swain (Vol. Ed.). VCH, Weinheim (1994)Google Scholar
  99. 99.
    J.C. Williams: Materials requirements for high-temperature structures in the 21st century. In: R.W. Cahn, A.G. Evans, M. McLean (Hrsg.) High-Temperature Structural Materials, S. 17–31. Chapman & Hall, London (1996)Google Scholar
  100. 100.
    P. Caron: High \( {\upgamma}^{\prime } \) solvus new generation nickel-based superalloys for single crystal turbine blade applications. In: T.M. Pollock et al. (Hrsg.) Superalloys 2000, S. 737–746. Proc. 9th Int. Symp. on Superalloys, Seven Springs/Pa. The Minerals, Metals & Materials Society, Warrendale/Pa. (2000)Google Scholar
  101. 101.
    R. Bürgel, P.D. Portella, J. Preuhs: Recrystallization in single crystals of nickel base superalloys. In: T.M. Pollock et al. (Hrsg.) Superalloys 2000, S. 229–238. Proc. 9th Int. Symp. on Superalloys, Seven Springs/Pa. The Minerals, Metals & Materials Society, Warrendale/Pa. (2000)Google Scholar
  102. 102.
    U. Klotz: Mechanische Eigenschaften und Gefügestabilität von warmfesten 9–12 % Chromstählen mit Mikroduplexstruktur. Dissertation, ETH Zürich (1999)Google Scholar
  103. 103.
    R. Bürgel, A. Volek, R.F. Singer: The Role of Cobalt in Nickel Base Superalloys. unveröffentlichtGoogle Scholar
  104. 104.
    F. Pyczak, H. Mughrabi: An overview of Md-number calculations as a tool for phase stability prediction in Ni-base superalloys. In: D.G. Morris et al. (Hrsg.) Intermetallics and Superalloys, EUROMAT 99 – Bd. 10, S. 47–51. Wiley-VCH/DGM, Weinheim (2000)Google Scholar
  105. 105.
    H. Biermann: Ursachen und Auswirkungen der gerichteten Vergröberung („Floßbildung“) in einkristallinen Nickelbasis-Superlegierungen. Fortschritt-Berichte VDI, Reihe 5, Nr. 550. VDI Verlag, Düsseldorf (1999)Google Scholar
  106. 106.
    F.D. Hull: Estimating alloy densities. Met. Prog. Nov. 1969, 139–140 (1969)Google Scholar
  107. 107.
    A. Volek et al.: Influence of topologically closed packed phase formation on creep rupture life of directionally solidified nickel-base superalloys. Metall. Mater. Trans. A 37A, 405–410 (2006)Google Scholar
  108. 108.
    N. Saunders, A.P. Miodownik: CALPHAD – Calculation of Phase Diagrams, a Comprehensive Guide. Pergamon, Oxford (1998)Google Scholar
  109. 109.
    Landolt-Börnstein, Neue Serie, Gruppe III/Bd. 6: Strukturdaten der Elemente und intermetallischen Phasen, S. 471, K.-H. und A.M. Hellwege (Hrsg.) Springer, Berlin (1971)Google Scholar
  110. 110.
    R. Bürgel et al.: Development of a new alloy for directional solidification of large industrial gas turbine blades. In: K.A. Green et al. (Hrsg.) Superalloys 2004, S. 25–34. Proc. 10th Int. Symp. on Superalloys, Seven Springs/Pa. The Minerals, Metals & Materials Society, Warrendale/Pa. (2004)Google Scholar
  111. 111.
    R. Bürgel, W. Eßer, M. Ott, D.-Y.F. Roan: Method for restoring the microstructure of a textured article and for refurbishing a gas turbine blade or vane. US-Patent No. US 6,719,853 B2, Apr. 13, 2004Google Scholar
  112. 112.
    A. Volek: Erstarrungsmikrostruktur und Hochtemperatureigenschaften rheniumhaltiger, stängelkristalliner Nickel-Basis-Superlegierungen. Dissertation, Universität Erlangen-Nürnberg (2002)Google Scholar
  113. 113.
    M.S.A. Karunaratne et al.: Modelling of the microsegregation in CMSX-4 superalloy and its homogenisation during heat treatment. In: T.M. Pollock et al. (Hrsg.) Superalloys 2000, S. 263–272. Proc. 9th Int. Symp. on Superalloys, Seven Springs/Pa. The Minerals, Metals & Materials Society, Warrendale/Pa. (2000)Google Scholar
  114. 114.
    R. Bürgel: unveröffentlichte ErgebnisseGoogle Scholar
  115. 115.
    T.B. Masalski (Hrsg.): Binary Alloys Phase Diagrams, 2nd edn. ASM International, Ohio (1990)Google Scholar
  116. 116.
    K. Gebauer: Performance, tolerance and cost of TiAl passenger car valves. Intermetallics 14, 355–360 (2006)Google Scholar
  117. 117.
    T. Tetsui: Development of an TiAl turbocharger for passenger vehicles. Mater. Sci. Eng. A329-331, 582–588 (2002)Google Scholar
  118. 118.
    R.L. Kennedy: ALLVAC 718PLUS, superalloy for the next forty years. In: E.A. Loria (Hrsg.) Superalloys 718, 625, 706 and Derivatives 2005, S. 1–14. The Minerals, Metals & Materials Soc., Warrendale/Pa. (2005)Google Scholar
  119. 119.
    W.-D. Cao: Solidification and solid state phase transformation of Allvac 718Plus alloy. In: E.A. Loria (Hrsg.) Superalloys 718, 625, 706 and Derivatives 2005, S. 165–177. The Minerals, Metals & Materials Soc., Warrendale/Pa. (2005)Google Scholar
  120. 120.
    E. Erdös et al.: Gefügestabilität von hochwarmfesten Guss- und Schmiedelegierungen auf Ni-Basis. Schlussbericht COST-Aktion 50, Projekt CH 2/1. Gebr. Sulzer (1977)Google Scholar
  121. 121.
    S. Walston et al.: Joint development of a fourth generation single crystal superalloy. In: K.A. Green et al. (Hrsg.) Superalloys 2004, S. 15–24. Proc. 10th Int. Symp. on Superalloys, Seven Springs/Pa. The Minerals, Metals & Materials Society, Warrendale/Pa. (2004)Google Scholar
  122. 122.
    S. Lohfeld, M. Schütze: Untersuchung der Eigenschaften von MoSi2-Kompositen in korrosiven und oxidativen Atmosphären. Abschlussbericht BMBF-Projekt Nr. 03 N 2015 C1. DECHEMA, Frankfurt (2001)Google Scholar
  123. 123.
    D. Blavette, P. Caron, T. Khan: An atom-probe study of some fine scale microstructural features in Ni-base single crystal superalloys. In: D. Duhl et al. (Hrsg.) Superalloys 1988, S. 305–314. The Metall. Soc., Warrendale/Pa.Google Scholar
  124. 124.
    T. Grosdidier, A. Hazotte, A. Simon: Precipitation and dissolution processes in \( \gamma / {\gamma}^{\prime } \) single crystal nickel-based superalloys. Mater. Sci. Eng. A256, 183–196 (1998)Google Scholar
  125. 125.
    L.I. Duarte: Aspectos microestruturais da liga Ti-48Al-2Cr-2Nb. Ciência e Tecnologia dos Materials 15, 105 (2003)Google Scholar
  126. 126.
    B. Zeumer, G. Sauthoff: Deformation behaviour of intermetallic NiAl–Ta alloys with strengthening laves phase for high-temperature applications III. Effects of alloying with Cr. Intermetallics 6, 451–460 (1998)Google Scholar
  127. 127.
    P.J. Warren, A. Cerezo, G.D.W. Smith: An atom probe study of the distribution of rhenium in a nickel-base superalloy. Mater. Sci. Eng. A250, 88–92 (1998)Google Scholar
  128. 128.
    A. Volek et al.: Partitioning of Re between γ and \( {\gamma}^{\prime } \) phase in nickel-base superalloys. Scr. Mater. 52, 141–145 (2005)Google Scholar
  129. 129.
    P. Jéhanno et al.: Assessment of the high temperature deformation behaviour of molybdenum. Mater. Sci. Eng. A 463, 216–223 (2007)Google Scholar
  130. 130.
    M. Krüger et al.: Mechanically alloyed Mo-Si-B alloys with a continous a-Mo matrix and improved mechanical properties. Intermetallics 16, 933–941 (2008)Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Hans Jürgen Maier
    • 1
  • Thomas Niendorf
    • 2
  • Ralf Bürgel
    • 3
  1. 1.Institut für WerkstoffkundeLeibniz Universität HannoverGarbsenDeutschland
  2. 2.Institut für WerkstofftechnikUniversität KasselKasselDeutschland
  3. 3.GeorgsmarienhütteDeutschland

Personalised recommendations