Advertisement

Head in the clouds, feet on the ground – A realistic view on using digital tools in mathematics education

  • Paul DrijversEmail author
Chapter

Zusammenfassung

Throughout the last three decades, mathematics educators have expressed high expectations of the benefits of using digital technology in mathematics education. In retrospect, however, we admit that this integration has not always been as successful and as smooth as we hoped for. What were the main phases in this period of drastic changes with respect to tool development and availability, theoretical foci and frameworks, and classroom implementation? To answer this question, I will attempt to summarize relevant publications in the field over the past decades, with a bias towards publications by the main person in this book. I will try to identify main trends, and to synthesize what we have learnt so far, both from an academic “head-in-the-clouds” perspective and from a “feet-on-the-ground” classroom teaching perspective. As an overall conclusion, the claim is that a successful integration of digital tools in mathematics education is a still promising, but subtle matter. Tool use in mathematics education is still waiting for its full exploitation, which will require close collaboration between teachers and researchers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alberto, R., Bakker, A., Walker-van Aalst, O., Boon, P., & Drijvers, P. (2019). Embodied Instrumentation: An eye-tracking case study in trigonometry. Paper presented at theGoogle Scholar
  2. Eleventh Congress of the European Society for Research in Mathematics Education, Utrecht, the Netherlands, 6–10 February, 2019.Google Scholar
  3. Arcavi, A., Drijvers, P., & Stacey, K. (2017). The teaching and learning of algebra: ideas, insights and activities. London: Routledge.Google Scholar
  4. Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7, 245–274.CrossRefGoogle Scholar
  5. Ball, L., Drijvers, P., Ladel, S., Siller, H.-S., Tabach, M., & Vale, C. (Eds.) (2018). Uses of technology in primary and secondary mathematics education: Tools, topics and trends. Cham: Springer.Google Scholar
  6. Barzel, B. (1992). Taylor Series with Derive. In J. Böhm (Ed.), Teaching Mathematics with Derive (pp. 52–58). Bromley: Chartwell-Bratt.Google Scholar
  7. Barzel, B. & Drijvers, P. (1993). Lineare Algebra. Matrizen mit Derive. Mathematik betrifft uns 1(5).Google Scholar
  8. Barzel, B., Drijvers, P., Maschietto, M., & Trouche, L. (2006). Tools and technologies in mathematical didactics. In M. Bosch (Ed.), Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education (pp. 927–938). Barcelona, Spain: Universitat Ramon Llull.Google Scholar
  9. Drijvers, P. (2009). Tools and tests: technology in national final mathematics examinations. In C. Winslow (Ed.), Nordic Research on Mathematics Education, Proceedings from NORMA08 (pp. 225–236). Rotterdam: Sense.CrossRefGoogle Scholar
  10. Drijvers, P. (2018a). Digital assessment of mathematics: opportunities, issues and criteria. Mesure et Évaluation en Éducation, 41(1), 41–66.CrossRefGoogle Scholar
  11. Drijvers, P. (2018b). Tools and taxonomies: a response to Hoyles. Research in Mathematics Education, 20(3), 229–235.  https://doi.org/10.1080/14794802.2018.1522269CrossRefGoogle Scholar
  12. Drijvers, P., Ball, L., Barzel, B., Heid, M. K., Cao, Y., & Maschietto, M. (2016). Uses of technology in lower secondary mathematics education – A concise topical survey. New York: Springer.  https://doi.org/10.1007/978-3-319-33666-4Google Scholar
  13. Drijvers, P., & Barzel, B. (2011). Gleichungen lösen mit Technologie. Verschiedene Werkzeuge, verschiedene Sichtweisen. mathematik lehren, (169), 54–57.Google Scholar
  14. Drijvers, P., Boon, P., & Van Reeuwijk, M. (2011). Algebra and technology. In P. Drijvers (Ed.), Secondary algebra education. Revisiting topics and themes and exploring the unknown (pp. 179–202). Rotterdam: Sense.Google Scholar
  15. Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: instrumental orchestrations in the technology-rich mathematics classroom. Educational Studies in Mathematics, 75(2), 213–234.Google Scholar
  16. Drijvers, P., Tacoma, S., Besamusca, A., Doorman, M., & Boon, P. (2013). Digital resources inviting changes in mid-adopting teachers’ practices and orchestrations. ZDM Mathematics Education, 45(7), 987–1001.Google Scholar
  17. Duijzer, A.C.G., Shayan, S., Bakker, A., van der Schaaf, M.F. & Abrahamson, D. (2017). Touchscreen tablets: Coordinating action and perception for mathematical cognition. Frontiers in Psychology, 8, 1–19.Google Scholar
  18. Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for mathematics teachers? Educational Studies in Mathematics, 71(3), 199–218.Google Scholar
  19. Heeren, B., & Jeuring, J. (2014). Feedback services for stepwise exercises. Science of Computer Programming, 88, 110-129.Google Scholar
  20. Hoyles, C. (2018). Transforming the mathematical practices of learners and teachers through digital technology. Research in Mathematics Education, 20(3), 209–228.  https://doi.org/10.1080/14794802.2018.1484799.CrossRefGoogle Scholar
  21. Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: a framework for teacher knowledge. Teachers College Record, 108(6), 1017–1054.Google Scholar
  22. Monaghan, J., Trouche, L., & Borwein, J. (2016). Tools and Mathematics. Cham: Springer.Google Scholar
  23. Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures and computers. Dordrecht: Kluwer.Google Scholar
  24. Rabardel, P. (1995). Les hommes et les technologies; approche cognitive des instruments contemporains. Paris: Armand Colin.Google Scholar
  25. Tacoma, S., Sosnovsky, S., Boon, P., Jeuring, J., & Drijvers, P. (2018). The interplay between open student modeling and statistics didactics. Digital Experiences in Mathematics Education, 4(2-3), 139–162.  https://doi.org/10.1007/s40751-018-0040-9.CrossRefGoogle Scholar
  26. Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151–169.Google Scholar
  27. Thurm, D., Klinger, M., & Barzel, B. (2015). How to professionalize teachers to use technology in a meaningful way – Design research of a CPD program. In N. Amado & S. Carreira (Eds.), Proceedings of the 12th International Conference on Technology in Mathematics Teaching (pp. 335–343). Faro: University of Algarve.Google Scholar
  28. Trgalová, J., Clark-Wilson, A., & Weigand, H.-G. (2018). Technology and resources in mathematics education. In T. Dreyfus, M. Artigue, D. Potari, S. Prediger, & K. Ruthven (Eds.), Developing Research in Mathematics Education. Twenty Years of Communication and Collaboration in Europe (pp. 142–161). New York: Routledge.Google Scholar
  29. Trouche, L. (2004). Managing complexity of human/machine interactions in computerized learning environments: guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9, 281–307.CrossRefGoogle Scholar
  30. Trouche, L., & Drijvers, P. (2010). Handheld technology: Flashback into the future. ZDM Mathematics Education, 42(7), 667–681.Google Scholar
  31. Vygotsky, L.S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Utrecht UniversityUtrechtNiederlande

Personalised recommendations