Advertisement

Zur Spezifizierung von Risiko und Unsicherheit in räumlichen Modellen

  • Guido TiemannEmail author
Chapter
Part of the Jahrbuch für Handlungs- und Entscheidungstheorie book series (JAHAEN)

Zusammenfassung

Beiträge zur räumlichen Theorie des Wählens gehen zumeist von idealisierten Bedingungen aus: Wähler sind vollständig informiert und entscheiden sich strikt rational, Parteien beziehen klare und eindeutig identifizierbare Positionen im politischen Wettbewerbsraum, Wählereinstellungen zum Umgang mit Risiko und Unsicherheit sind à priori in theoretischen und statistischen Modellen fixiert. Dieser Beitrag hinterfragt diese Grundannahmen der „Neo-Downsianischen“ Modelltradition. Er bestimmt empirisch, wie Wähler räumliche Distanzen in Nutzenfunktionen übersetzen und wie sie dabei mit Risiko und Unsicherheit umgehen. Ein wesentlicher Aspekt betrifft dabei die Angemessenheit von konkaven oder konvexen Nutzenfunktionen, also die Frage, ob theoretische und/ oder statistische Modelle Verlustfunktionen mit quadratischen oder mit linearen Metriken spezifizieren sollten. Die empirische Analyse verwendet das umfangreiche Datenmaterial desWahlforschungsprojekts „The Comparative Study of Electoral Systems“ (CSES). Vergleichende Analysen des Wahlverhaltens zeigen dabei eindeutig, dass Wähler über neunzig heterogene Wahlkontexte hinweg wesentlich weniger risikoavers sind als von der großen Mehrheit theoretischer und empirischer Beiträge unterstellt wird. Stattdessen zeigen dieser Beitrag, dass moderne Wähler sich im Wesentlichen risikoneutral verhalten.

Notes

Danksagung

Ich danke Susumu Shikano für Rat und Hilfe bei der Spezifikation der statistischen Modelle, und ich danke den beiden anonymen Gutachtern für die ihre sehr wertvollen Kommentare und Vorschläge. Der Beitrag entstand im Rahmen des von der Fritz-Thyssen-Stiftung geförderten PRojekts „Lost in Space? The Emptiness of the Center and Centrifugal Determinants of Vote Choice and Party Competition in EP Elections“ (Az. 10.17.1.039PO).

Literatur

  1. Adams, J., Merrill, S., and Grofman, B. (2005). A Unified Theory of Party Competition. A Cross-National Analysis Integrating Spatial and Behavioral Factors. Cambridge University Press, Cambridge.Google Scholar
  2. Aldrich, J. H. and McKelvey, R. D. (1977). A Method of Scaling with Applications to the 1968 and 1972 Presidential Elections. The American Political Science Review, 71(1):111–130.CrossRefGoogle Scholar
  3. Alvarez, R. M. (1998). Information and Elections. University of Michigan Press, Ann Arbor.Google Scholar
  4. Alvarez, R. M. and Nagler, J. (1998). When Politics and Models Collide: Estimating Models of Multiparty Elections. American Journal of Political Science, 42(1):55–96.CrossRefGoogle Scholar
  5. Bartels, L. M. (1986). Issue Voting Under Uncertainty: An Empirical Test. American Journal of Political Science, 30(4):709–728.CrossRefGoogle Scholar
  6. Berinsky, A. J. and Lewis, J. B. (2007). An Estimate of Risk Aversion in the U.S. Electorate. Quarterly Journal of Political Science, 2(2):139–154.CrossRefGoogle Scholar
  7. Brady, H. E. and Ansolabehere, S. (1989). The Nature of Utility Functions in Mass Publics. The American Political Science Review, 83(1):143–163.CrossRefGoogle Scholar
  8. Carroll, R., Lewis, J. B., Lo, J., Poole, K. T., and Rosenthal, H. (2013). The Structure of Utility in Spatial Models of Voting. American Journal of Political Science, 57(4):1008–1028.Google Scholar
  9. Davis, O. A., Hinich, M. J., and Ordeshook, P. (1970). An Expository Development of a Mathematical Model of the Electoral Process. American Political Science Review, 64(2):426.CrossRefGoogle Scholar
  10. Degan, A. and Merlo, A. (2009). Do voters vote ideologically? Journal of Economic Theory, 144(5):1868–1894.CrossRefGoogle Scholar
  11. Dow, J. K. and Endersby, J. W. (2004). Multinomial probit and multinomial logit: a comparison of choice models for voting research. Electoral Studies, 23(1):107–122.CrossRefGoogle Scholar
  12. Downs, A. (1957). An Economic Theory of Democracy. Harper and Row, New York.Google Scholar
  13. Eguia, J. X. (2012). A spatial theory of party formation. Economic Theory, 49(3):549–570.CrossRefGoogle Scholar
  14. Eguia, J. X. (2013). Challenges to the Standard Euclidean Spatial Model. In Advances in Political Economy, pages 169–180. Springer, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
  15. Enelow, J. M. and Hinich, M. J. (1984). The Spatial Theory of Voting: An Introduction. Cambridge University Press, Cambridge.Google Scholar
  16. Feddersen, T. (1992). A Voting Model Implying Duverger’s Law and Positive Turnout. American Journal of Political Science, 36(4):938–962.CrossRefGoogle Scholar
  17. Gabel, M. J. and Huber, J. D. (2000). Putting Parties in Their Place: Inferring Party Left-Right Ideological Positions from Party Manifestos Data. American Journal of Political Science, 44(1):94–103.CrossRefGoogle Scholar
  18. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian Data Analysis. CRC Press, Boca Raton.Google Scholar
  19. Grand, P. and Tiemann, G. (2013). Projection effects and specification bias in spatial models of European Parliament elections. European Union Politics, 14(4):497–521.CrossRefGoogle Scholar
  20. Grynaviski, J. D. and Corrigan, B. E. (2006). Specification Issues in Proximity Models of Candidate Evaluation (with Issue Importance). Political Analysis, 14(4):393–420.CrossRefGoogle Scholar
  21. Hare, C., Armstrong, D. A., Bakker, R., Carroll, R., and Poole, K. T. (2015). Using Bayesian Aldrich-McKelvey Scaling to Study Citizens’ Ideological Preferences and Perceptions. American Journal of Political Science, 59(3):759–774.CrossRefGoogle Scholar
  22. Humphreys, M. and Laver, M. (2010). Spatial Models, Cognitive Metrics, and Majority Rule Equilibria. British Journal of Political Science, 40(01):11.CrossRefGoogle Scholar
  23. Jackman, S. (2009). Bayesian Analysis for the Social Sciences. Wiley, New York.CrossRefGoogle Scholar
  24. Jessee, S. A. (2012). Ideology and Spatial Voting in American Elections. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  25. Kramer, G. H. (1977). A dynamical model of political equilibrium. Journal of Economic Theory, 16(2):310–334.CrossRefGoogle Scholar
  26. Krosnick, J. A. (2002). The Challenges of Political Psychology: Lessons to Be Learned from Research on Attitude Perceptions. In Kuklinski, J. H., editor, Thinking about political psychology, pages 115–152. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  27. Laver, M. and Hunt, B. (1992). Policy and Party Competition. Routledge, London.Google Scholar
  28. Lo, J., Proksch, S.-O., and Gschwend, T. (2014). A Common Left-Right Scale for Voters and Parties in Europe. Political Analysis, 22(2):205–223.CrossRefGoogle Scholar
  29. Lupia, A. (2016). Uninformed: Why People Seem to Know So Little about Politics and What We Can Do about It. Oxford University Press, Oxford.Google Scholar
  30. McKelvey, R. (1976). Intransitivities in multidimensional voting models and some implications for agenda control. Journal of Economic Theory, 12(3):472–482.CrossRefGoogle Scholar
  31. Merrill, S. and Adams, J. (2002). Centrifugal Incentives in Multi-Candidate Elections. Journal of Theoretical Politics, 14(3):275–300.CrossRefGoogle Scholar
  32. Merrill, S. and Grofman, B. (1999). A unified theory of voting. Directional and proximity spatial models. Cambridge University Press, Cambridge.Google Scholar
  33. Munger, M. C. and Munger, K. M. (2015). Choosing in Groups. Cambridge University Press, Cambridge.Google Scholar
  34. Patty, J. W., Snyder, J. M., and Ting, M. (2009). Two’s company, three’s an equilibrium: strategic voting and multicandidate elections. Quarterly Journal of Political Science, 4(3):251–278.CrossRefGoogle Scholar
  35. Plott, C. R. (1967). A Notion of Equilibrium and Its Possibility Under Majority Rule. American Economic Review, 57(4):787–806.Google Scholar
  36. Poole, K. T. and Rosenthal, H. (1985). A Spatial Model for Legislative Roll Call Analysis. American Journal of Political Science, 29(2):357–384.CrossRefGoogle Scholar
  37. Przeworski, A. and Teune, H. (1970). The Logic of Comparative Social Inquiry. Wiley, New York.Google Scholar
  38. Rabinowitz, G. and Macdonald, S. E. (1989). A Directional Theory of Issue Voting. American Political Science Review, 83(1):93–121.CrossRefGoogle Scholar
  39. Schofield, N. and Sened, I. (2006). Multiparty Democracy: Elections and Legislative Politics. Cambridge University Press, Cambridge.Google Scholar
  40. Shepsle, K. (1972). The Strategy of Ambiguity. American Political Science Review, 66(2):555–568.CrossRefGoogle Scholar
  41. Shikano, S. and Behnke, J. (2009). Issuewählen bei der Bundestagswahl 2005: Eine empirische Schätzung der Verlustfunktion der deutschen Wählerschaft. In Gabriel, O. W., Weßels, B., and Falter, J. W., editors, Wahlen und WÄhler, pages 251–266, Wiesbaden. VS Verlag.CrossRefGoogle Scholar
  42. Singh, S. (2014). Linear and quadratic utility loss functions in voting behavior research. Journal of Theoretical Politics, 26(1):35–58.CrossRefGoogle Scholar
  43. Thurner, P. W. (2000). The empirical application of the spatial theory of voting in multiparty systems with random utility models. Electoral Studies, 19(4):493–517.CrossRefGoogle Scholar
  44. Tiemann, G. (2003). Das “most different systems design” als Instrument zum Umgang mit multipler Kausalität. In Pickel, S., Pickel, G., Lauth, H.-J., and Jahn, D., editors, Vergleichende Politikwissenschaftliche Methoden. Neue Entwicklungen und Diskussionen, pages 265–287, Opladen. Westdeutscher Verlag.CrossRefGoogle Scholar
  45. Tomz, M. and Van Houweling, R. P. (2009). The Electoral Implications of Candidate Ambiguity. American Political Science Review, 103(1):83–98.CrossRefGoogle Scholar
  46. Train, K. E. (2009). Discrete Choice Methods Model with Simulation. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  47. van der Eijk, C., van der Brug, W., Kroh, M., and Franklin, M. (2006). Rethinking the dependent variable in voting behavior: On the measurement and analysis of electoral utilities. Electoral Studies, 25(3):424–447.CrossRefGoogle Scholar
  48. Wittman, D. (1973). Parties as Utility Maximizers. The American Political Science Review, 67(2):490–498.CrossRefGoogle Scholar
  49. Wittman, D. (1977). Candidates with policy preferences: A dynamic model. Journal of Economic Theory, 14(1):180–189.CrossRefGoogle Scholar
  50. Ye, M., Li, Q., and Leiker, K. W. (2011). Evaluating Voter–Candidate Proximity in a Non-Euclidean Space. Journal of Elections, Public Opinion & Parties, 21(4):497–521.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Forschungsgruppe European Governance and Public FinanceWienÖsterreich

Personalised recommendations