Advertisement

Modellgetriebene Entscheidungsunterstützung für die Umwidmung gebrauchter Traktionsbatterien

  • Benjamin KlörEmail author
  • Markus Monhof
Chapter

Zusammenfassung

Für künftige Akteure eines Geschäftsmodells mit gebrauchten Traktionsbatterien ist insbesondere die technisch zulässige und ökonomisch erfolgreiche Umwidmung der Batteriesysteme zu geeigneten Weiterverwendungsszenarien als ein komplexes Unterfangen zu bewerten. Mit einer zunehmenden Anzahl gebrauchter Traktionsbatterien, die in den nächsten Jahren ihren Weg zurück aus der Erstanwendung in den Elektroautos finden (Hoyer et al. 2011; Foster et al. 2014), wird für menschliche Entscheider sowohl der Entscheidungsaufwand als auch eine zufriedenstellende Entscheidungsqualität mit den bisher zur Verfügung stehenden Hilfsmitteln nicht beherrschbar bzw. erreichbar sein. Dennoch müssen zukünftige Akteure auf dem Markt für gebrauchte Traktionsbatterien effiziente (Aufwand) und effektive (Qualität) Entscheidungen treffen, um geeignete bzw. optimale Dispositionen für die Weiterverwendung von Gebrauchtbatterien zu identifizieren und das Geschäft erfolgreich betreiben zu können.

Literatur

  1. Adya A, Blakeley JA, Melnik S, Muralidhar S (2007) Anatomy of the ADO.NET entity framework. In: Proceedings of the 2007 ACM SIGMOD international conference on Management of data – SIGMOD ’07. ACM Press, New York City, New York, USA, 877–888.CrossRefGoogle Scholar
  2. Ahmadi L, Fowler M, Young SB, Fraser RA, Gaffney B, Walker SB (2014) Energy efficiency of Li-ion battery packs re-used in stationary power applications. Sustainable Energy Technologies and Assessments 8:9–17.Google Scholar
  3. Akerlof GA (1970) The Market for “Lemons”: Quality Uncertainty and the Market Mechanism. The Quarterly Journal of Economics 84:488–500.CrossRefGoogle Scholar
  4. Alt H, Blum N, Mehlhorn K, Paul M (1991) Computing a maximum cardinality matching in a bipartite graph in time O(n1.5 m log n). Information Processing Letters 37:237–240.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Anderson DR, Sweeney DJ, Williams TA, Camm JD, Martin K (2009) An introduction to management science: quantitative approaches to decision making, 13. Aufl. South-Western Cengage Learning, Mason, Ohio, USA.Google Scholar
  6. Balzert H (2000) Lehrbuch der Software-Technik: Software-Entwicklung, 2. Aufl. Spektrum Akademischer Verlag, Heidelberg, Berlin.zbMATHGoogle Scholar
  7. Bondy JA, Murty USR (2008) Graph Theory. Springer, Berlin Heidelberg.zbMATHCrossRefGoogle Scholar
  8. Chamoni P, Gluchowski P (1999) Analytische Informationssysteme – Einordnung und Überblick. In: Analytische Informationssysteme. Springer, Berlin Heidelberg, 3–22.Google Scholar
  9. Chen PP-S (1976) The entity-relationship model – toward a unified view of data. ACM Transactions on Database Systems 1:9–36.CrossRefGoogle Scholar
  10. Edmonds J, Karp RM (1972) Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems. Journal of the ACM 19:248–264.zbMATHCrossRefGoogle Scholar
  11. Ekstrand MD, Riedl JT, Konstan JA (2011) Collaborative Filtering Recommender Systems. Foundations and Trends in Human–Computer Interaction 4:81–173.CrossRefGoogle Scholar
  12. European Committee for Electrotechnical Standardization (2011) EN 50160: Voltage characteristics of electricity supplied by public distribution systems. Google Scholar
  13. Ford LR, Fulkerson DR (1956) Maximal flow through a network. Journal canadien de mathématiques 8:399–404.MathSciNetzbMATHCrossRefGoogle Scholar
  14. Foster M, Isely P, Standridge CR, Hasan MM (2014) Feasibility assessment of remanufacturing, repurposing, and recycling of end of vehicle application lithium-ion batteries. Journal of Industrial Engineering and Management 7:698–715.CrossRefGoogle Scholar
  15. Fourer R, Gay DM, Hill M, Kernighan BW, Laboratories TB (1990) AMPL: A Mathematical Programming Language. Management Science 36:519–554.CrossRefGoogle Scholar
  16. Garofalo R (2011) Building Enterprise Applications with Windows Presentation Foundation and the Model View ViewModel Pattern (Developer Reference). Microsoft Press, Sebastopol, California, USA.Google Scholar
  17. Helff F, Gruenwald L, Orazio L (2016) Weighted Sum Model for Multi-Objective Query Optimization for Mobile-Cloud Database Environments. In: 19th International Conference on Extending Database Technology. Bordeaux, Frankreich, 1–6.Google Scholar
  18. Herlocker JL, Konstan JA, Riedl J (2000) Explaining Collaborative Filtering Recommendations. Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work 241–250.Google Scholar
  19. Heymans C, Walker SB, Young SB, Fowler M (2014) Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling. Energy Policy 71:22–30.CrossRefGoogle Scholar
  20. Hillier FS, Lieberman GJ (2000) Introduction To Operations Research, 7. Aufl. McGraw-Hill Higher Education, New York City, New York, USA.zbMATHGoogle Scholar
  21. Hopcroft JE, Karp RM (1973) A n5/2 Algorithm for Maximum Matchings in Bipartite Graphs. In: SIAM Journal on Computing 2(4):225–231.MathSciNetzbMATHCrossRefGoogle Scholar
  22. Hoyer C, Kickhäfer K, Spengler TS (2011) Strategische Planung des Recyclings von Lithium-Ionen-Traktionsbatterien. In: Sucky E, Asdecker B, Dobhan A, u. a. (Hrsg), Logistikmanagement: Herausforderungen, Chancen und Lösungen, Band II, Tagungsband der Logistikmanagement 2011. University of Bamberg Press, Bamberg, 399–419.Google Scholar
  23. Kim IY, de Weck OL (2006) Adaptive weighted sum method for multiobjective optimization: A new method for Pareto front generation. Structural and Multidisciplinary Optimization 31:105–116.MathSciNetzbMATHCrossRefGoogle Scholar
  24. Klör B (2017) Building a Model-Driven Decision Support System for Repurposing Electric Vehicle Batteries – Design and Evaluation. Dissertation, Westfälische Wilhelms-Universität Münster, Münster.Google Scholar
  25. Klör B, Bräuer S, Beverungen D, Monhof M (2015) A Domain-Specific Modeling Language for Electric Vehicle Batteries. In: Proceedings of the 12th International Conference on Wirtschaftsinformatik (WI 2015). Osnabrück, 1038–1054.Google Scholar
  26. Klör B, Monhof M, Beverungen D, Bräuer S (2017) Design and evaluation of a model-driven decision support system for repurposing electric vehicle batteries. European Journal of Information Systems 27:171–188.CrossRefGoogle Scholar
  27. Linden G, Smith B, York J (2003) Amazon.com Recommendations: Item-to-Item Collaborative Filtering. IEEE Internet Computing 7:76–80.CrossRefGoogle Scholar
  28. Makhorin A (2012) GLPK (GNU Linear Programming Kit). https://www.gnu.org/software/glpk/. Zugegriffen: 28. Februar 2017.Google Scholar
  29. Power DJ (2004) Specifying An Expanded Framework for Classifying and Describing Decision Support Systems. Communications of the Association for Information Systems Volume 13:158–166.CrossRefGoogle Scholar
  30. Power DJ, Sharda R (2007) Model-driven decision support systems: Concepts and research directions. Decision Support Systems 43:1044–1061.CrossRefGoogle Scholar
  31. Sarwar B, Karypis G, Konstan JA, Riedl J (2001) Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web. 285–295.Google Scholar
  32. Sauter VL (2011) Decision Support Systems for Business Intelligence, 2. Aufl. John Wiley & Sons, Ltd, Hoboken, New Jersey, USA.zbMATHCrossRefGoogle Scholar
  33. Schrijver A (2003) Combinatorial Optimization – Polyhedra and Efficiency, 1. Aufl. Springer, Berlin Heidelberg.zbMATHGoogle Scholar
  34. Sharda R, Delen D, Turban E (2014) Business Intelligence and Analytics: Systems for Decision Support, 10. Aufl. Pearson Education Limited, Harlow, UK.Google Scholar
  35. Simon HA (1955) A Behavioral Model of Rational Choice. The Quarterly Journal of Economics 69:99–118.CrossRefGoogle Scholar
  36. Simon HA (1956) Rational choice and the structure of the environment. Psychological review 63:129–138.CrossRefGoogle Scholar
  37. Simon HA (1977) The New Science of Management Decision. Prentice Hall, Englewood Cliffs, New Jersey, USA.Google Scholar
  38. Simon HA (1979) Rational Decision Making in Business Organizations. The American Economic Review 69:493–513.Google Scholar
  39. Sommerville I (2010) Software Engineering, 9. Aufl. Pearson, Boston, Massachusetts, USA.zbMATHGoogle Scholar
  40. Sørensen E, Mihailesc MI (2010) Model-View-ViewModel (MVVM) Design Pattern using Windows Presentation Foundation (WPF) Technology. MegaByte Journal 9:1–19.Google Scholar
  41. Sprague Jr. RH (1980) A Framework for the Development of Decision Support Systems. MIS Quarterly 4:1–26.CrossRefGoogle Scholar
  42. Sprague Jr. RH, Carlson ED (1982) Building Effective Decision Support Systems. Prentice-Hall, Englewood Cliffs, New Jersey, USA.Google Scholar
  43. Stanimirovic IP, Zlatanovic ML, Petkovic MD (2011) On the Linear Weighted Sum Method for Multi-Objective. Scientific Journal Facta Universitatis Vol. 26:49–63.MathSciNetzbMATHGoogle Scholar
  44. Theussl S, Hornik K (2010) Rglpk: R/GNU Linear Programming Kit Interface. https://cran.r-project.org/web/packages/Rglpk/index.%0Ahtml. Zugegriffen: 18. November 2016.Google Scholar
  45. Turban E, Aronson JE, Liang T-P, Sharda R (2006) Decision Support and Business Intelligence Systems, 8. Aufl. Prentice-Hall, Upper Saddle River, New Jersey, USA.Google Scholar
  46. Williams B, Lipman T (2011) Analysis of the Combined Vehicle- and Post-Vehicle-Use Value of Lithium-Ion Plug-In-Vehicle Propulsion Batteries. University of California, Berkley – Transportation Sustainability Research Center, Berkeley, California, USA.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Lehrstuhl für Wirtschaftsinformatik und InformationsmanagementWestfälische Wilhelms-Universität MünsterMünsterDeutschland

Personalised recommendations