Advertisement

End-of-Life-Strategien für Traktionsbatterien

  • Sebastian Bräuer
  • Alexander Stieger
Chapter

Zusammenfassung

Traktionsbatterien kommen in Elektrofahrzeugen in unterschiedlichen Formen und Größen vor und unterscheiden sich etwa entsprechend ihres Einsatzes in vollelektrischen Fahrzeugen, Plugin‐Hybrid‐Fahrzeugen und Hybrid‐Fahrzeugen (vgl. Kap. 1). Sie stellen zudem komplexe Systeme dar, die neben den Batteriemodulen und den in diesen enthaltenen Batteriezellen vor allem aus einem Batteriemanagementsystem zum Monitoring und zur Steuerung der Lade‑ und Entladezyklen, einem System zur Regelung der Temperatur und dem Gehäuse zum Schutz gegen Außeneinwirkung bestehen. Diese Komponenten müssen entsprechend des Einsatzzweckes des Batteriesystems aufeinander abgestimmt werden. Da Batterien sowohl über die Zeit als auch durch Zyklisierung (d. h. Lade‑ und Entladezyklen) altern, nimmt ihre Leistungsfähigkeit zunehmend ab und ihr automobiles Leben ist somit begrenzt.

Literatur

  1. Aguirre D (2010) Design for Repurposing: A sustainable design strategy for product life and beyond. In: Industrial Designers Society of America 2010 Conference. Portland, Oregon, USA.Google Scholar
  2. Ahmadi L, Fowler M, Young SB, Fraser RA, Gaffney B, Walker SB (2014a) Energy efficiency of Li-ion battery packs re-used in stationary power applications. Sustainable Energy Technologies and Assessments 8:9–17.CrossRefGoogle Scholar
  3. Ahmadi L, Yip A, Fowler M, Young SB, Fraser RA (2014b) Environmental feasibility of re-use of electric vehicle batteries. Sustainable Energy Technologies and Assessments 6:64–74.CrossRefGoogle Scholar
  4. Ahmadi L, Young SB, Fowler M, Fraser RA, Achachlouei MA (2017) A cascaded life cycle: reuse of electric vehicle lithium-ion battery packs in energy storage systems. The International Journal of Life Cycle Assessment 22:111–124.CrossRefGoogle Scholar
  5. APRA Europe (2013) APRAs Remanufacturing Translation Matrix. http://www.apra-europe.org/dateien/downloads/Reman_Terms_and_Definitions_Translations_Final.pdf. Zugegriffen: 22. Februar 2017.Google Scholar
  6. Automotive Parts Remanufacturers Association Europe (2012) Remanufacturing Terminology – Remanufacturing Term Guideline. http://www.apra-europe.org/dateien/downloads/Reman_Term_Guideline_2012-03-06.pdf. Zugegriffen: 4. März 2017.Google Scholar
  7. Ayres R, Ferrer G, Van Leynseele T (1997) Eco-efficiency, asset recovery and remanufacturing. European Management Journal 15:557–574.CrossRefGoogle Scholar
  8. Bach TC, Schuster SF, Fleder E, Müller J, Brand MJ, Lorrmann H, Jossen A, Sextl G (2016) Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression. Journal of Energy Storage 5:212–223.CrossRefGoogle Scholar
  9. BAM (2013) Amtliche Bekanntmachungen Band 43 2/2013. Google Scholar
  10. Baumann M, Rohr S, Lienkamp M (2016) Development and Investigation of a modular stationary Second Life Storage System. In: Conference on Future Automotive Technology. Fürstenfeld.Google Scholar
  11. Bernardes A., Espinosa DC., Tenório JA. (2004) Recycling of batteries: a review of current processes and technologies. Journal of Power Sources 130:291–298.CrossRefGoogle Scholar
  12. Beverungen D, Bräuer S, Plenter F, Klör B, Monhof M (2017) Ensembles of context and form for repurposing electric vehicle batteries: an exploratory study. Computer Science – Research and Development 32:195–209.CrossRefGoogle Scholar
  13. Bowler M (2014) Battery Second Use: A Framework for Evaluating the Combination of Two Value Chains. Dissertation, Clemson University, Clemson, South Carolina, USA.Google Scholar
  14. Bras B, McIntosh MW (1999) Product, process, and organizational design for remanufacture – an overview of research. Robotics and Computer-Integrated Manufacturing 15:167–178.CrossRefGoogle Scholar
  15. Bräuer S (2016) They Not Only Live Once – Towards Product-Service Systems for Repurposed Electric Vehicle Batteries. In: Nissen V, Stelzer D, Straßburger S, Fischer D (Hrsg), Proceedings of the Multikonferenz Wirtschaftsinformatik (MKWI 2016). Ilmenau, 1299–1310.Google Scholar
  16. Bräuer S (2018) Electric Vehicle Battery Second Use – Future Trade, Business Models, and Information Systems Design. Dissertation, Westfälische Wilhelms-Universität Münster, Münster.Google Scholar
  17. Buchert M, Jenseit W, Merz C, Schüler D (2011a) Ökobilanz zum „Recycling von Lithium-Ionene-Batterien“ (LithoRec). Öko-Institut e.V. Institut für angewandte Ökologie, Darmstadt.Google Scholar
  18. Buchert M, Jenseit W, Merz C, Schüler D (2011b) Verbundprojekt: Entwicklung eines realisierbaren Recyclingkonzeptes für die Hochleistungsbatterien zukünftiger Elektrofahrzeuge – LiBRi Teliprojekt: LCA der Recyclingverfahren. Öko-Institut e.V. Institut für angewandte Ökologie, Darmstadt.Google Scholar
  19. Bundesministerium der Justiz und für Verbraucherschutz (2009) Verordnung zur Durchführung des Batteriegesetzes vom 12. November 2009 (BGBl. I S. 3783). http://www.gesetze-im-internet.de/bundesrecht/battgdv/gesamt.pdf. Zugegriffen: 1. März 2017.Google Scholar
  20. Bundesministerium der Justiz und für Verbraucherschutz (2015a) Batteriegesetz vom 25. Juni 2009 (BGBl. I S. 1582), das zuletzt durch Artikel 1 des Gesetzes vom 20. November 2015 (BGBl. I S. 2071) geändert worden ist. In: Der Dtsch. Bundestag. http://www.gesetze-im-internet.de/bundesrecht/battg/gesamt.pdf. Zugegriffen: 1. März 2017.Google Scholar
  21. Bundesministerium der Justiz und für Verbraucherschutz (2015b) Altfahrzeug-Verordnung in der Fassung der Bekanntmachung vom 21. Juni 2002 (BGBl. I S. 2214), die durch Artikel 3 der Verordnung vom 2. Dezember 2016 (BGBl. I S. 2770) geändert worden ist. https://www.gesetze-im-internet.de/bundesrecht/altautov/gesamt.pdf. Zugegriffen: 1. März 2017.Google Scholar
  22. Bundesministerium der Justiz und für Verbraucherschutz (2015c) Produkthaftungsgesetz vom 15. Dezember 1989 (BGBl. I S. 2198), das zuletzt durch Artikel 180 der Verordnung vom 31. August 2015 (BGBl. I S. 1474) geändert worden ist. https://www.gesetze-im-internet.de/bundesrecht/prodhaftg/gesamt.pdf. Zugegriffen: 1. März 2017.Google Scholar
  23. Bundesministerium der Justiz und für Verbraucherschutz (2016a) Kreislaufwirtschaftsgesetz vom 24. Februar 2012 (BGBl. I S. 212), das zuletzt durch Artikel 4 des Gesetzes vom 4. April 2016 (BGBl. I S. 569) geändert worden ist. http://www.gesetze-im-internet.de/bundesrecht/krwg/gesamt.pdf. Zugegriffen: 1. März 2017.Google Scholar
  24. Bundesministerium der Justiz und für Verbraucherschutz (2016b) Gefahrgutverordnung Straße, Eisenbahn und Binnenschifffahrt in der Fassung der Bekanntmachung vom 30. März 2015 (BGBl. I S. 366), die zuletzt durch Artikel 6 des Gesetzes vom 26. Juli 2016 (BGBl. I S. 1843) geändert worden ist. http://www.gesetze-im-internet.de/bundesrecht/ggvseb/gesamt.pdf. Zugegriffen: 1. März 2017.Google Scholar
  25. Carrasco-Gallego R, Ponce-Cueto E, Dekker R (2012) Closed-loop supply chains of reusable articles: a typology grounded on case studies. International Journal of Production Research 50:5582–5596.CrossRefGoogle Scholar
  26. Casals LC, García BA (2016) Assessing Electric Vehicles Battery Second Life Remanufacture and Management. Journal of Green Engineering 6:77–98.CrossRefGoogle Scholar
  27. Casals LC, García BA, Cremades LV (2017a) Electric vehicle battery reuse: Preparing for a second life. Journal of Industrial Engineering and Management 10:266.CrossRefGoogle Scholar
  28. Casals LC, García BA, Aguesse F, Iturrondobeitia A (2017b) Second life of electric vehicle batteries: relation between materials degradation and environmental impact. The International Journal of Life Cycle Assessment 22:82–93.CrossRefGoogle Scholar
  29. Catton J, Walker SB, McInnis P, Fowler M, Fraser R, Young SB, Gaffney B (2017) Comparative safety risk and the use of repurposed EV batteries for stationary energy storage. In: 2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE). IEEE, Oshawa, Kanada, 200–209.CrossRefGoogle Scholar
  30. Cheret D (2007) Battery collection and recycling. In: Industrial Applications of Batteries: From Cars to Aerospace and Energy Storage. Elsevier, Amsterdam, Niederlande, 691–736.CrossRefGoogle Scholar
  31. Cready E, Lippert J, Pihl J, Weinstock I, Symons P, Jungst RG (2003) Final Report: Technical and Economic Feasibility of Applying Used EV Batteries in Stationary Applications: A Study for the DOE Energy Storage Systems Program. Sandia National Laboratories, Albuquerque, New Mexico, USA.Google Scholar
  32. Danzer MA, Liebau V, Maglia F (2015) Aging of lithium-ion batteries for electric vehicles. In: Scrosati B, Garche J, Tillmetz W (Hrsg), Advances in Battery Technologies for Electric Vehicles. Elsevier, Cambridge, UK, 359–387.CrossRefGoogle Scholar
  33. Elkind EN (2014) Reuse and Repower: How to Save Money and Clean the Grid with Second-Life Electric Vehicle Batteries. Berkeley Law, Los Angeles, California, USA.Google Scholar
  34. Ellingsen LA-W, Majeau-Bettez G, Singh B, Srivastava AK, Valøen LO, Strømman AH (2014) Life Cycle Assessment of a Lithium-Ion Battery Vehicle Pack. Journal of Industrial Ecology 18:113–124.CrossRefGoogle Scholar
  35. Espinosa DCR, Bernardes AM, Tenório JAS (2004) An overview on the current processes for the recycling of batteries. Journal of Power Sources 135:311–319.CrossRefGoogle Scholar
  36. European Environment Agency (2015) Overview of electricity production and use in Europe. http://www.eea.europa.eu/data-and-maps/indicators/primary-energy-consumption-by-fuel-6/assessment. Zugegriffen: 22. April 2016.Google Scholar
  37. European Environment Agency (2016) Electric Vehicles in Europe. European Environment Agency, Kopenhagen, Dänemark.Google Scholar
  38. Ferguson N, Browne J (2001) Issues in end-of-life product recovery and reverse logistics. Production Planning & Control: The Management of Operations 12:534–547.CrossRefGoogle Scholar
  39. Fischhaber S, Regett A, Schuster SF, Hesse H (2016) Studie: Second-Life-Konzepte für Lithium-Ionen-Batterien aus Elektrofahrzeugen – Analyse von Nachnutzungsanwendungen, ökonomischen und ökologischen Potenzialen. Deutsches Dialog Institut GmbH, Frankfurt am Main.Google Scholar
  40. Fleischmann M, Bloemhof-Ruwaard JM, Beullens P, Dekker R (2004) Reverse Logistics Network Design. In: Dekker R, Fleischmann M, Inderfurth K, van Wassenhove LN (Hrsg), Reverse Logistics. Springer, Berlin Heidelberg, 65–94.CrossRefGoogle Scholar
  41. Foster M, Isely P, Standridge CR, Hasan MM (2014) Feasibility assessment of remanufacturing, repurposing, and recycling of end of vehicle application lithium-ion batteries. Journal of Industrial Engineering and Management 7:698–715.CrossRefGoogle Scholar
  42. García-Rodríguez FJ, Castilla-Gutiérrez C, Bustos-Flores C (2013) Implementation of reverse logistics as a sustainable tool for raw material purchasing in developing countries: The case of Venezuela. International Journal of Production Economics 141:582–592.CrossRefGoogle Scholar
  43. Georgi-Maschler T (2009) Entwickung eines Recyclingverfahrens für portable Li-Ion-Gerätebatterien. Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen.Google Scholar
  44. Georgi-Maschler T, Friedrich B, Weyhe R, Heegn H, Rutz M (2012) Development of a recycling process for Li-ion batteries. Journal of Power Sources 207:173–182.CrossRefGoogle Scholar
  45. Gerrard J, Kandlikar M (2007) Is European end-of-life vehicle legislation living up to expectations? Assessing the impact of the ELV Directive on ‘green’ innovation and vehicle recovery. Journal of Cleaner Production 15:17–27.CrossRefGoogle Scholar
  46. Gohla-Neudecker B, Bowler M, Mohr S (2015) Battery 2nd life: Leveraging the sustainability potential of EVs and renewable energy grid integration. In: 2015 International Conference on Clean Electrical Power (ICCEP). Taormina, Italien, 311–318.CrossRefGoogle Scholar
  47. Gohla-Neudecker B, Maiyappan VS, Juraschek S, Mohr S (2017) Battery 2nd life: Presenting a benchmark stationary storage system as enabler for the global energy transition. In: 2017 6th International Conference on Clean Electrical Power (ICCEP). Santa Margherita Ligure, Italien, 103–109.CrossRefGoogle Scholar
  48. Gray C, Charter M (2008) Remanufacturing and product design. International Journal of Product Development 6:375.CrossRefGoogle Scholar
  49. Groenewald J, Marco J, Higgins N, Barai A (2016) In-Service EV Battery Life Extension Through Feasible Remanufacturing. In: SAE 2016 World Congress and Exhibition. Detroit, Michigan, USA.Google Scholar
  50. Groenewald J, Grandjean T, Marco J (2017) Accelerated energy capacity measurement of lithium-ion cells to support future circular economy strategies for electric vehicles. Renewable and Sustainable Energy Reviews 69:98–111.CrossRefGoogle Scholar
  51. Guo F, Li H, Yao C, Alsolami M, Lang A, Lu X, Wang J (2014) Residential usage profile optimization and experimental implementation of the retired HEV battery with a hybrid microgrid testbed. In: 2014 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, Pittsburgh, Pennsylvania, USA, 428–435.CrossRefGoogle Scholar
  52. Gur K, Chatzikyriakou D, Baschet C, Salomon M (2018) The reuse of electrified vehicle batteries as a means of integrating renewable energy into the European electricity grid: A policy and market analysis. Energy Policy 113:535–545.CrossRefGoogle Scholar
  53. Han SLC, Chan PYL, Venkatraman P, Apeagyei P, Cassidy T, Tyler DJ (2017) Standard vs. Upcycled Fashion Design and Production. Fashion Practice 9:69–94.CrossRefGoogle Scholar
  54. Hanisch C, Haselrieder W, Kwade A (2011) Recovery of Active Materials from Spent Lithium-Ion Electrodes and Electrode Production Rejects. In: Glocalized Solutions for Sustainability in Manufacturing. Springer, Berlin, 85–89.CrossRefGoogle Scholar
  55. Hanisch C, Haselrieder W, Kwade A (2012) Recycling von Lithium-Ionen-Batterien – das Projekt LithoRec. In: Thomé-Kozmiensky KJ, Goldmann D (Hrsg), Recycling und Rohstoffe. TK Verlag Karl Thomé-Kozmiensky, Neuruppin, 691–698.Google Scholar
  56. Hanisch C, Haselrieder W, Kwade A (2014) Verfahren zum wiedergewinnen von aktivmaterial aus einer galvanischen zelle und aktivmaterial-separationsanlage, insbesondere aktivmetall-separationsanlage. Google Scholar
  57. Hanisch C, Diekmann J, Stieger A, Haselrieder W, Kwade A (2015a) Recycling of Lithium-Ion Batteries. In: Handbook of Clean Energy Systems. John Wiley & Sons, Ltd, Chichester, UK, 1–24.Google Scholar
  58. Hanisch C, Loellhoeffel T, Diekmann J, Markley KJ, Haselrieder W, Kwade A (2015b) Recycling of lithium-ion batteries: a novel method to separate coating and foil of electrodes. Journal of Cleaner Production 108:301–311.CrossRefGoogle Scholar
  59. Hartwell I, Marco J (2016) Management of intellectual property uncertainty in a remanufacturing strategy for automotive energy storage systems. Journal of Remanufacturing 6:3.CrossRefGoogle Scholar
  60. Hassoun J, Scrosati B (2015) Review – Advances in Anode and Electrolyte Materials for the Progress of Lithium-Ion and beyond Lithium-Ion Batteries. Journal of The Electrochemical Society 162:A2582–A2588.CrossRefGoogle Scholar
  61. Hatcher GD, Ijomah WL, Windmill JFC (2011) Design for remanufacture: a literature review and future research needs. Journal of Cleaner Production 19:2004–2014.CrossRefGoogle Scholar
  62. Heegn H, Rutz M (2008) Rückgewinnung der Rohstoffe aus Li-Ionen-Akkumulatoren, Teilvorhaben 3: Batterie- und Schlackenaufbereitung. UVR-FIA GmbH, Freiberg.Google Scholar
  63. Hou C, Wang H, Ouyang M (2014) Battery Sizing for Plug-in Hybrid Electric Vehicles in Beijing: A TCO Model Based Analysis. Energies 7:5374–5399.CrossRefGoogle Scholar
  64. Hoyer C, Kickhäfer K, Spengler TS (2011) Strategische Planung des Recyclings von Lithium-Ionen-Traktionsbatterien. In: Sucky E, Asdecker B, Dobhan A, u. a. (Hrsg), Logistikmanagement: Herausforderungen, Chancen und Lösungen, Band II, Tagungsband der Logistikmanagement 2011. University of Bamberg Press, Bamberg, 399–419.Google Scholar
  65. Ibi Y, Kanamaru K, Iwamoto M, Matsukawa Y, Ootaguro A (2015) Method for Reusing Secondary Battery – US 9,166,261 B2. https://worldwide.espacenet.com/publicationDetails/originalDocument?FT=D&date=20151020&DB=&locale=en_EP&CC=US&NR=9166261B2. Zugegriffen: 12. März 2017.Google Scholar
  66. Jun HB, Kiritsis D, Xirouchakis P (2007) Research issues on closed-loop PLM. Computers in Industry 58:855–868.CrossRefGoogle Scholar
  67. Kerr W, Ryan C (2001) Eco-efficiency gains from remanufacturing. Journal of Cleaner Production 9:75–81.CrossRefGoogle Scholar
  68. Kim D, Geissler A, Menn C, Hengevoss D (2015) Quantifizierung des Umweltnutzens von gebrauchten Batterien aus Elektrofahrzeugen als gebäudeintegrierte 2nd-Life-Stromspeichersysteme. Bauphysik 37:213–222.CrossRefGoogle Scholar
  69. Klör B, Beverungen D, Bräuer S, Plenter F, Monhof M (2015) A Market for Trading Used Electric Vehicle Batteries - Theoretical Foundations and Informations Systems. In: Proceedings of the 23th European Conference on Information Systems (ECIS 2015). Münster.Google Scholar
  70. Knemeyer AM, Ponzurick TG, Logar CM (2002) A qualitative examination of factors affecting reverse logistics systems for end-of-life computers. International Journal of Physical Distribution & Logistics Management 32:455–479.CrossRefGoogle Scholar
  71. Koba D, Ito S, Nakagiri Y, Fukuma T, Ichikawa K, Takahashi Y, Mitsui M (2016) Method for Reusing Vehicle Rechargeable Battery – EP 3 059 113 A2. https://worldwide.espacenet.com/publicationDetails/biblio?II=9&ND=3&adjacent=true&locale=en_EP&FT=D&date=20160818&CC=US&NR=2016240898A1. Zugegriffen: 12. März 2017.Google Scholar
  72. Kurimoto Y (2013) Battery Management System, Battery Management Apparatus, Method of Reusing Battery, and Information Communication Terminal Apparatus. https://worldwide.espacenet.com/publicationDetails/originalDocument?FT=D&date=20130411&DB=&locale=en_EP&CC=US&NR=2013090872A1. Zugegriffen: 11. April 2017.Google Scholar
  73. Kurimoto Y, Tojima K (2015) Assembled Battery Reusing System, and Apparatus for Assembled Battery Reusing System – WO 2015/052561 A1. https://worldwide.espacenet.com/publicationDetails/originalDocument?FT=D&date=20150416&DB=&locale=en_EP&CC=WO&NR=2015052561A1. Zugegriffen: 12. März 2017.Google Scholar
  74. Kwade A, Bärwaldt G (2012) Recycling von Lithium-Ionen-Batterien: Abschlussbericht des Verbundprojektes. TU Braunschweig, Braunschweig.Google Scholar
  75. Kwade A, Hanisch C, Diekmann J (2014) Technologien zum Recycling und zur Wiederverwendung von Materialien gealterter Lithium-Ionen-Batterien. In: Batterieforum Deutschland. Berlin.Google Scholar
  76. Lain MJ (2001) Recycling of lithium ion cells and batteries. Journal of Power Sources 97–98:736–738.CrossRefGoogle Scholar
  77. Lain MJ (2002) Recycling of galvanic cells. https://patents.google.com/patent/US6447669. Zugegriffen: 4. März 2017.Google Scholar
  78. Lambert S, Riopel D, Abdul-Kader W (2011) A Reverse Logistics Decisions Conceptual Framework. Computers & Industrial Engineering 61:561–581.CrossRefGoogle Scholar
  79. Letmathe P, Suares M (2017) A consumer-oriented total cost of ownership model for different vehicle types in Germany. Transportation Research Part D: Transport and Environment 57:314–335.CrossRefGoogle Scholar
  80. Lih W-C, Yen J-H, Shieh F-H, Liao Y-M (2012) Second-use Applications of Lithium-ion Batteries Retired from Electric Vehicles: Challenges, Repurposing Process, Cost Analysis and Optimal Business Model. International Journal of Advancements in Computing Technology 4:518–527.CrossRefGoogle Scholar
  81. Liu WW, Zhang H, Liu LH, Qing XC, Tang ZJ, Li MZ, Yin JS, Zhang HC (2016) Remanufacturing cathode from end-of-life of lithium-ion secondary batteries by Nd:YAG laser radiation. Clean Technologies and Environmental Policy 18:231–243.CrossRefGoogle Scholar
  82. Lu L, Han X, Li J, Hua J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources 226:272–288.CrossRefGoogle Scholar
  83. Maegawa K, Nakanishi T, Komori K (2013) Method of Reusing Rechargeable Battery – US 8,389,137 B2. https://worldwide.espacenet.com/publicationDetails/originalDocument?FT=D&date=20130305&DB=&locale=en_EP&CC=US&NR=8389137B2. Zugegriffen: 12. März 2017.Google Scholar
  84. Magazin für Restkultur (2015) Fünf Fragen an … Reiner Pilz (Prägte den Begriff »Upcycling«). http://www.magazin-restkultur.de/fuenf-fragen-an-reiner-pilz-upcycling/. Zugegriffen: 2. März 2018.Google Scholar
  85. Object Management Group (2011) Business Process Model and Notation (BPMN): Version 2.0. http://www.omg.org/spec/BPMN/2.0/PDF. Zugegriffen: 23. November 2014.Google Scholar
  86. Martens H (2011) Recyclingtechnik. Spektrum Akademischer Verlag, Heidelberg.CrossRefGoogle Scholar
  87. Martens H, Goldmann D (2016) Recyclingtechnik, 2. Aufl. Springer Fachmedien, Wiesbaden.CrossRefGoogle Scholar
  88. Martinez-Laserna E, Sarasketa-Zabala E, Villarreal I, Stroe DI, Swierczynski M, Warnecke A, Timmermans J-M, Goutam S, Omar N, Rodriguez P (2018) Technical Viability of Battery Second Life: A Study from the Ageing Perspective. IEEE Transactions on Industry Applications 9994:1–1.Google Scholar
  89. Mayer T, Parschkoff W, Sandurkov B, Brand MJ, Horsche MF, Schuster SF, Jossen A (2015) Evaluierung der Weiterverwendung gebrauchter Lithium-Ionen-Zellen aus Elektromobilität und Marktübersicht Hausbatterien – Evaluation des Stromspeichersystems. LION Smart GmbH, München.Google Scholar
  90. McLaughlin W, Adams TS (1999) Li reclamation process. https://www.google.ch/patents/US5888463. Google Scholar
  91. Neubauer J, Pesaran A (2011) The Ability of Battery Second Use Strategies to Impact Plug-in Electric Vehicle Prices and Serve Utility Energy Storage Applications. Journal of Power Sources 196:10351–10358.CrossRefGoogle Scholar
  92. Neubauer J, Smith K, Wood E, Pesaran A (2015a) Identifying and Overcoming Critical Barriers to Widespread Second Use of PEV Batteries. National Renewable Energy Laboratory, Golden, Colorado, USA.CrossRefGoogle Scholar
  93. Neubauer JS, Wood E, Pesaran A (2015b) A Second Life for Electric Vehicle Batteries: Answering Questions on Battery Degradation and Value. SAE International Journal of Materials and Manufacturing 8:21–23.CrossRefGoogle Scholar
  94. Nykvist B, Nilsson M (2015) Rapidly falling costs of battery packs for electric vehicles. Nature Climate Change 5:329–332.CrossRefGoogle Scholar
  95. Obata H (2015) Secondary Battery Reuse Method, Vehicle Drive Power Source, and Vehicle. https://worldwide.espacenet.com/publicationDetails/originalDocument?FT=D&date=20150402&DB=&locale=en_EP&CC=US&NR=2015093611A1. Zugegriffen: 12. März 2017.Google Scholar
  96. Peng L, Zhu Y, Chen D, Ruoff RS, Yu G (2016) Two-Dimensional Materials for Beyond-Lithium-Ion Batteries. Advanced Energy Materials 6:1600025.CrossRefGoogle Scholar
  97. Pigosso DCA, Zanette ET, Filho AG, Ometto AR, Rozenfeld H (2010) Ecodesign methods focused on remanufacturing. Journal of Cleaner Production 18:21–31.CrossRefGoogle Scholar
  98. Posch A (2012) Zwischenbetriebliche Recyclingnetzwerke aus entscheidungstheoretischer Perspektive. In: Industrial Ecology Management. Gabler Verlag, Wiesbaden, 205–218.CrossRefGoogle Scholar
  99. Ramoni MO, Zhang H-C (2013) End-of-life (EOL) issues and options for electric vehicle batteries. Clean Technologies and Environmental Policy 15:881–891.CrossRefGoogle Scholar
  100. Ramoni MO, Zhang Y, Zhang H-C, Ghebrab T (2017) Laser ablation of electrodes for Li-ion battery remanufacturing. The International Journal of Advanced Manufacturing Technology 88:3067–3076.CrossRefGoogle Scholar
  101. RECHARGE aisbl (2014) Re-use and Second use of Rechargeable Batteries. Brüssel.Google Scholar
  102. Reid G, Julve J (2016) Second Life-Batterien als flexible Speicher für Erneuerbare Energien. Bundesverband Erneuerbare Energie e.V. (BEE), Hannover Messe, Berlin.Google Scholar
  103. Reinhardt R, Garcia BA, Casals LC, Domingo SG (2016) Critical evaluation of European Union legislation on the second use of degraded traction batteries. In: 2016 13th International Conference on the European Energy Market (EEM). Porto, Portugal, 1–5.Google Scholar
  104. Renault Österreich GmbH (2017) Der neue Renault ZOE. https://www.renault.at/content/dam/Renault/AT/downloadcenter/zoe/PL_ZOE.pdf. Zugegriffen: 3. März 2017.Google Scholar
  105. Retriev Technologies (2015) Lithium Ion. www.retrievtech.com/recycling/lithium-ion. Zugegriffen: 21. Oktober 2015.Google Scholar
  106. Richa K, Babbitt CW, Gaustad G (2017a) Eco-Efficiency Analysis of a Lithium-Ion Battery Waste Hierarchy Inspired by Circular Economy. Journal of Industrial Ecology 21:715–730.CrossRefGoogle Scholar
  107. Richa K, Babbitt CW, Nenadic NG, Gaustad G (2017b) Environmental trade-offs across cascading lithium-ion battery life cycles. The International Journal of Life Cycle Assessment 22:66–81.CrossRefGoogle Scholar
  108. Rittershausen J, McDonagh M (2011) Moving Energy Storage from Concept to Reality: Southern California Edison’s Approach to Evaluating Energy Storage. Edison International, Rosemead, California, USA.Google Scholar
  109. Rogers D, Tibben-Lembke R (1998) Going Backwards: Reverse Logistics Trends and Practices. Reverse Logistics Executive Council, Reno, Nevada, USA.Google Scholar
  110. Rohr S, Wagner S, Baumann M, Muller S, Lienkamp M (2017) A techno-economic analysis of end of life value chains for lithium-ion batteries from electric vehicles. In: 2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER). IEEE, Monte-Carlo, 1–14.Google Scholar
  111. Rose CM (2000) Design for Environment: A Method for Formulating End-of-Life Strategies. Dissertation, Stanford University, Stanford, California, USA.Google Scholar
  112. Rose CM, Beiter KA, Ishii K (1999) Determining end-of-life strategies as a part of product definition. In: Proceedings of the 1999 IEEE International Symposium on Electronics and the Environment. IEEE, Piscataway, New Jersey, USA, 219–224.Google Scholar
  113. Saxena S, Le Floch C, MacDonald J, Moura S (2015) Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models. Journal of Power Sources 282:265–276.CrossRefGoogle Scholar
  114. Seitz MA (2007) A Critical Assessment of Motives for Product Recovery: The Case of Engine Remanufacturing. Journal of Cleaner Production 15:1147–1157.CrossRefGoogle Scholar
  115. Shirt in. Short out. (2018) www.boxer-shirt.de. https://www.boxer-shirt.de/#!/. Zugegriffen: 3. Februar 2018.
  116. Stan A-I, Swierczynski M, Stroe D-I, Teodorescu R, Andreasen SJ (2014) Lithium ion battery chemistries from renewable energy storage to automotive and back-up power applications – An overview. In: Proceedings of 2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM 2014). Brasov, Rumänien, 713–720.CrossRefGoogle Scholar
  117. Standridge CR, Hasan M (2015) Post-Vehicle-Application Lithium – Ion Battery Remanufacturing, Repurposing and Recycling Capacity: Modeling and Analysis. 8:823–839.Google Scholar
  118. Strandridge CR, Corneal L (2014) Remanufacturing, Repurposing, and Recycling of Post-Vehicle-Application Lithium-Ion Batteries. College of Business, San José State University, San José, California, USA.Google Scholar
  119. Sundin E (2004) Product and process design for successful remanufacturing. Dissertation, Linköpings Universitet, Linköping, Schweden.Google Scholar
  120. Sundin E, Bras B (2005) Making functional sales environmentally and economically beneficial through product remanufacturing. Journal of Cleaner Production 13:913–925.CrossRefGoogle Scholar
  121. Swierczynski M, Stroe DI, Laserna EM, Sarasketa-Zabala E, Timmermans JM, Goutam S, Teodorescu R (2016) The Second Life Ageing of the NMC/C Electric Vehicle Retired Li-Ion Batteries in the Stationary Applications. ECS Transactions 74:55–62.CrossRefGoogle Scholar
  122. Tanii T, Tsuzuki S, Honmura S, Kamimura T, Sasaki K, Yabuki M, Nishida K (2003) Method for crushing cell. https://www.google.ch/patents/US6524737. Zugegriffen: 3. April 2017.Google Scholar
  123. Tedjar F, Foudraz JC (2007) Method for the mixed recycling of lithium-based anode batteries and cells. https://www.google.com/patents/US20070196725. Zugegriffen: 3. April 2017.Google Scholar
  124. Tes-Amm Singapore (2016) Internetauftritt Tes-Amm Singapore Pte Ltd. http://www.tes-amm.com/index.php/en/recycling. Zugegriffen: 19. Januar 2016.Google Scholar
  125. Teslarati Network (2013) Tesla Model S Weight Distribution. http://www.teslarati.com/tesla-model-s-weight/. Zugegriffen: 3. März 2017.Google Scholar
  126. Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation – approaching the limits of, and going beyond, lithium-ion batteries. Energy & Environmental Science 5:7854.CrossRefGoogle Scholar
  127. Thierry M, Salomon M, Van Nunen J, Van Wassenhove L (1995) Strategic Issues in Product Recovery Management. California Management Review 37:114–136.CrossRefGoogle Scholar
  128. Tong SJ, Same A, Kootstra MA, Park JW (2013) Off-grid photovoltaic vehicle charge using second life lithium batteries: An experimental and numerical investigation. Applied Energy 104:740–750.CrossRefGoogle Scholar
  129. Törkler A (2014) Batteries Refurbishing & Reuse. https://elibama.files.wordpress.com/2014/10/v-c-batteries-reuse.pdf. Zugegriffen: 5. März 2017.Google Scholar
  130. Tornow A, Andrew S, Dietrich F, Dröder K (2015) Impact of multi-material components on the assembly and disassembly of traction batteries. In: The 22nd CIRP Conference on Life Cycle Engineering. Elsevier B.V., Sydney, Australien, 792–797.Google Scholar
  131. UNECE (2016) ADR 2017 – European Agreement Concerning the International Carriage of Dangerous Goods by Road – Volume I. http://www.unece.org/trans/danger/publi/adr/adr_e.html. Zugegriffen: 1. März 2017.Google Scholar
  132. United Nations (2015) Recommendations on the Transport of Dangerous Goods – Manual of Tests and Criteria, 6. Aufl. United Nations, New York City, New York, USA, Genf, Schweiz.CrossRefGoogle Scholar
  133. US Census Bureau (2017) Umsatz der Branche Reparatur und Instandhaltung von sonstigen mechanischen und elektrischen Autoteilen in den USA von 2008 bis 2015 und Prognose bis zum Jahr 2020 (in Millionen Euro). https://de.statista.com/prognosen/424104/reparatur-und-instandhaltung-von-sonstigen-autoteilen-in-den-usa---umsatzprognose. Zugegriffen: 2. März 2018.Google Scholar
  134. Vadenbo CO (2009) Prospective Environmental Assessment of Lithium Recovery in Battery Recycling. Dissertation, ETH Zürich, Zürich, Schweiz.Google Scholar
  135. Vadicherla T, Saravanan D (2014) Textiles and Apparel Development Using Recycled and Reclaimed Fibers. In: Muthu SS (Hrsg), Roadmap to Sustainable Textiles and Clothing – Regulatory Aspects and Sustainability Standards of Textiles and the Clothing Supply Chain. Springer Science+Business Media, Singapur, 139–160.Google Scholar
  136. Verein Deutscher Ingenieure (2002) VDI 2243 – Recyclingorientierte Produktentwicklung. Verein Deutscher Ingenieure, Düsseldorf.Google Scholar
  137. Vezzini A (2014) Manufacturers, Materials and Recycling Technologies. In: Pistoia G (Hrsg), Lithium-Ion Batteries. Elsevier, Kidlington, UK, 529–551.CrossRefGoogle Scholar
  138. Viswanathan V V, Kintner-Meyer M (2011) Second use of transportation batteries: Maximizing the value of batteries for transportation and grid services. IEEE Transactions on Vehicular Technology 60:2963–2970.CrossRefGoogle Scholar
  139. Viswanathan VV, Kintner-Meyer MC (2015) Repurposing of batteries from electric vehicles. In: Scrosati B, Garche J, Tillmetz W (Hrsg), Advances in Battery Technologies for Electric Vehicles. Elsevier, Cambridge, UK, 389–415.CrossRefGoogle Scholar
  140. Wegener C (2016) Upcycling. In: Glăveanu VP, Tanggaard L, Wegener C (Hrsg), Creativity – A New Vocabulary. Palgrave Macmillan UK, London, UK, 181–188.Google Scholar
  141. Wetzel J (2016) Weiteres Problem von Elektroautos gelöst. http://www.sueddeutsche.de/muenchen/preisverleihung-die-batterietester-1.2871616. Zugegriffen: 22. April 2017.Google Scholar
  142. Williams B, Lipman T (2011) Analysis of the Combined Vehicle- and Post-Vehicle-Use Value of Lithium-Ion Plug-In-Vehicle Propulsion Batteries. University of California, Berkley – Transportation Sustainability Research Center, Berkeley, California, USA.Google Scholar
  143. Williams DMTJ, Gole AM, Wachal RW (2012) Repurposing used electric vehicle batteries for energy storage of renewable energy in the power system. In: Proceedings of the 25th IEEE Canadian Conference on Electrical and Computer Engineering: Vision for a Greener Future (CCECE 2012). Montreal, Kanada.Google Scholar
  144. Williams E, Kahhat R, Allenby B, Kavazanjian E, Kim J, Xu M (2008) Environmental, Social, and Economic Implications of Global Reuse and Recycling of Personal Computers. Environmental Science & Technology 42:6446–6454.CrossRefGoogle Scholar
  145. Wyatt PM, Nguyen TT (2015) Remanufacturing Methods for Battery Module – WO 2015/016979 A1. https://worldwide.espacenet.com/publicationDetails/originalDocument?FT=D&date=20150205&DB=&locale=en_EP&CC=WO&NR=2015016979A1&KC=A1. Zugegriffen: 13. März 2017.Google Scholar
  146. Xu J, Thomas HR, Francis RW, Lum KR, Wang J, Liang B (2008) A review of processes and technologies for the recycling of lithium-ion secondary batteries. Journal of Power Sources 177:512–527.CrossRefGoogle Scholar
  147. Zenger T, Krebs A, Van Deutekom H (2003) Method of and apparatus for dismantling and storage of objects comprising alkali metals, such as alkali metal containing batteries. Google Scholar
  148. Zhang H, Liu W, Dong Y, Zhang H, Chen H (2014) A Method for Pre-determining the Optimal Remanufacturing Point of Lithium ion Batteries. Procedia CIRP 15:218–222.CrossRefGoogle Scholar
  149. Zink T, Maker F, Geyer R, Amirtharajah R, Akella V (2014) Comparative life cycle assessment of smartphone reuse: repurposing vs. refurbishment. The International Journal of Life Cycle Assessment 19:1099–1109.CrossRefGoogle Scholar
  150. Zwolinski P, Lopez-Ontiveros M-A, Brissaud D (2006) Integrated design of remanufacturable products based on product profiles. Journal of Cleaner Production 14:1333–1345.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Betriebswirtschaft und Wirtschaftsinformatik, Abteilung Informationssysteme und UnternehmensmodellierungUniversität HildesheimHildesheimDeutschland
  2. 2.Lehrstuhl für Wirtschaftsinformatik und InformationsmanagementWestfälische Wilhelms-Universität MünsterMünsterDeutschland

Personalised recommendations