Advertisement

Recent Developments in Structural Equation Modeling with Panel Data

Causal Analysis and Change over Time in Attitude Research
  • Jochen Mayerl
  • Henrik Andersen
Chapter

Zusammenfassung

This article outlines the various applications of longitudinal models using the structural equation modeling (SEM) framework. Two classical approaches of longitudinal analysis in SEM are the autoregressive cross-lagged models and the latent growth curve models. Hybrid longitudinal models in SEM attempt to combine the two strands of techniques. Recently, these hybrid models have been expanded upon to properly separate between- and within-effects. This article demonstrates the application of these models by empirically examining the relationship between environmental values and attitudes towards the so-called Energy Transition in Germany over time. We show that a variety of research questions can be examined using longitudinal models in SEM. The new developments in longitudinal models in SEM furthermore make it possible for researchers to more accurately test theories.

Schlüsselbegriffe

Longitudinal Models Structural Equation Modeling Measurement Invariance Latent Growth Curve Models Autoregressive Cross-Lagged Models Structured Residuals Hybrid Panel Models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Berry, D., and M. Willoughby. 2017. On the Practical Interpretability of Cross-Lagged Panel Models: Rethinking a Developmental Workhorse. Child Development 88(4): 1186–1206.Google Scholar
  2. Best, H., and T. Dannwolf 2014: Environmental Attitudes and Behavior. In: GESIS Panel – Standard Edition. Köln.Google Scholar
  3. Best, H., and J. Mayerl. 2013. Values, Beliefs, Attitudes: An Empirical Study on the Structure of Environmental Concern and Recycling Participation. Social Science Quarterly 94(3): 691-714.Google Scholar
  4. Bianconcini, S. and K. Bollen. 2018. The Latent Variable-Autoregressive Latent Trajectory Model: A General Framework for Longitudinal Analysis. Structural Equation Modeling: A Multidisciplinary Journal 00: 1-18.Google Scholar
  5. Biesanz, J. 2012. Autoregressive Longitudinal Models. In Handbook of Structural Equation Modeling, Ed. R. Hoyle, 459-471. New York, London: The Guilford Press.Google Scholar
  6. Bollen, K., and J. Brand. 2010. A General Panel Model with Random and Fixed Effects: A Structural Equations Approach. Social Forces 89(1): 1-34.Google Scholar
  7. Curran, P., and K. Bollen. 2001. The Best of Both Worlds. Combining Autoregressive and Latent Curve Models. In New Methods for the Analysis of Change, Eds. L. M. Collins and A. G. Sayer, 107-135. Washington: American Psychological Association.Google Scholar
  8. Curran, P., A. Howard, S. Bainter, S. Lane, and S. McGinley. 2014. The Separation of Between-Person and Within-Person Components of Individual Change Over Time: A Latent Curve Model With Structured Residuals. Journal of Consulting and Clinical Psychology 82(5): 879-894.Google Scholar
  9. Dunlap, R., K. Van Liere, A. Mertig, and R. Jones. 2000. Measuring Endorsement of the New Ecological Paradigm: A Revised NEP Scale. Journal of Social Issues 56(3): 425-442.Google Scholar
  10. Eagly, A., and S. Chaiken. 1998. Attitude structure and function. In The Handbook of social psychology Eds. D. T. Gilbert, S. T. Fiske, and G. Lindzey, 269-322. New York: McGraw-Hill.Google Scholar
  11. Ferrer, E., N. Balluerka, and K. Widaman. 2008. Factorial Invariance and the Specification of Second-Order Latent Growth Models. Methodology 4(1): 22-36.Google Scholar
  12. Finkel, Stevens E. 1995. Causal analysis with panel data. Thousand Oaks, CA: Sage.Google Scholar
  13. Fishbein, Martin, and I. Ajzen. 2010. Predicting and Changing Behavior. New York, Hove: Psychology Press.Google Scholar
  14. GESIS. 2016. GESIS Panel Extended Edition. GESIS Data Archive, Cologne. ZA5664 Datafile Version 17.0.0.  https://doi.org/10.4232/1.12742.
  15. Granger, W. J. 1969. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica 37(3): 424-438.Google Scholar
  16. Hair, Joseph F., W. Black, B. Babin, and R. Anderson. 2010. Multivariate Data Analysis (7th Ed.). Upper Saddle River, NJ: Pearson.Google Scholar
  17. Hamaker, E., R. Kuiper, and R. Grasman. 2015. A Critique of the Cross-Lagged Panel Model. Psychological Methods 20(1): 102-116.Google Scholar
  18. Hoffmann, L. and R. Stawski. 2009. Persons as Contexts: Evaluating Between-Person and Within-Person Effects in Longitudinal Analysis. Research in Human Development 6(2-3): 97-120.Google Scholar
  19. Keijsers, L. 2016. Parental monitoring and adolescent problem behaviors: How much do we really know? International Journal of Behavioral Development 40(3): 271-281.Google Scholar
  20. Kline, Rex. 2011. Principles and Practice of Structural Equation Modeling. Fourth Edition. New York, London: The Guilford Press.Google Scholar
  21. Krause, T., and D. Urban. 2013. Panelanalyse mit Mehrebenenmodellen. Eine anwendungsorientierte Einführung. Schriftenreihe des Instituts für Sozialwissenschaften der Universität Stuttgart.  https://doi.org/10.18419/opus-5649
  22. Mayerl, J. 2016. Environmental Concern in Cross-National Comparison – Methodological Threats and Measurement Equivalence. In Green European: Environmental Behaviour and Attitudes in Europe in a Historical and Cross-Cultural Comparative Perspective, Eds. A. Telesience, and M. Groß, 182-204. London, New York: Routledge.Google Scholar
  23. Opp, K.-D. 2010. Kausalität als Gegenstand der Sozialwissenschaften und der multivariaten Statistik. In Handbuch der sozialwissenschaftlichen Datenanalyse, Eds. C. Wolf and H. Best, 9-38. Wiesbaden: VS Verlag für Sozialwissenschaften.Google Scholar
  24. Rokeach, M. 1968. A Theory of Organization and Change Within Attitude Systems. Journal of Social Issues 24(1): 13-33.Google Scholar
  25. Schlüter, E., E. Davidov, and P. Schmidt. 2007. Applying Autoregressive Cross-Lagged and Latent Growth Curve Models to a Three-Wave Panel Study. In Longitudinal models in the behavior and related sciences, Eds. K. van Montfort, J. Oud and A. Satorra, 315-336. Mahwah, New Jersey: Lawrence Erlbaum Publishers, EAM Book Series.Google Scholar
  26. Schwartz, S. 2012. An Overview of the Schwartz Theory of Basic Values. Online Readings in Psychology and Culture 2(1).  https://doi.org/10.9707/2307-0919.1116.
  27. Stern, P., and T. Dietz. 1994. The value basis of environmental concern. Journal of Social Issues 50(3): 65-84.Google Scholar
  28. Stern, P., T. Dietz, L. Kalof, and G. Guagnano. 1995. Values, beliefs and proenvironmental action: Attitude formation towards emergent attitude objects. Journal of Applied Social Psychology 25: 1611–1636.Google Scholar
  29. Urban, D. 2002. Prozessanalyse im Strukturgleichungsmodell. Zur Anwendung latenter Wachstumskurvenmodelle in der Sozialisationsforschung. ZA-Information/Zentralarchiv für Empirische Sozialforschung 51: 6-37.Google Scholar
  30. Urban, Dieter. 2004. Neue Methoden der Längsschnittanalyse. Zur Anwendung von latenten Wachstumskurvenmodellen in Einstellungs- und Sozialisationsforschung. Münster: Lit Verlag.Google Scholar
  31. Urban, Dieter, and J. Mayerl. 2011. Regressionsanalyse: Theorie, Technik und Anwendung. 4., überarbeitete und erweiterte Auflage. Wiesbaden: VS Verlag für Sozialwissenschaften.Google Scholar
  32. Urban, Dieter, and J. Mayerl. 2014. Strukturgleichungsmodellierung: Ein Ratgeber für die Praxis. Wiesbaden: Springer VS Verlag.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Technische Universität KaiserslauternKaiserslauternDeutschland
  2. 2.KaiserslauternDeutschland

Personalised recommendations