Advertisement

Die Bedeutung der Diffusionsforschung für die Gesundheitskommunikation

  • Veronika KarnowskiEmail author
Chapter

Zusammenfassung

Die Diffusionsforschung modelliert sowohl auf der Mikroebene des einzelnen Individuums als auch auf der Makroebene der Gesellschaft den Prozess der Verbreitung von Innovationen sowie verschiedene Faktoren(gruppen), die diesen Prozess beeinflussen. Innovationen können dabei sowohl Kombinationen aus Gegenstand und damit verbundener Information, wie bspw. ein neues Blutzuckermessgerät und die Hinweise zu seiner Bedienung, oder aber nur Informationen, wie bspw. eine Impfkampagne, sein.

Schlüsselwörter

Diffusion Übernahme Adoption Innovation Nachrichtenverbreitung 

Literatur

  1. Alicea-Planas, J., Neafsey, P. J., & Anderson, E. (2011). A qualitative study of older adults and computer use for health education: „It opens people’s eyes“. Journal of Communication in Healthcare, 4, 38–45.Google Scholar
  2. Bakshy, E., Hofman, J. M., Mason, W. A., & Watts, D. J. (2011). Everyone’s an influencer: Quantifying influence on Twitter. In Proceedings of the fourth ACM international conference on Web search and data mining (S. 65–74). New York: ACM.CrossRefGoogle Scholar
  3. Bakshy, E., Rosenn, I., Marlow, C., & Adamic, L. (2012). The role of social networks in information diffusion. In Proceedings of the 21st international conference on World Wide Web (S. 519–528). New York: ACM.Google Scholar
  4. Berger, J., & Milkman, K. L. (2011). What makes online content viral? Journal of Marketing Research, 49(2), 192–205.CrossRefGoogle Scholar
  5. Bernhardt, J. M., Mays, D., & Kreuter, M. W. (2011). Dissemination 2.0: Closing the gap between knowledge and practice with new media and marketing. Journal of Health Communication, 16, 32–44.CrossRefGoogle Scholar
  6. Charters, W. W., & Pellegrin, R. (1973). Barriers to the innovation process: Four case studies of differentiated staffing. Educational Administration Quarterly, 9(1), 3–14.CrossRefGoogle Scholar
  7. Cohen, E. L., & Head, K. J. (2013). Identifying knowledge-attitude-practice gaps to enhance HPV vaccine diffusion. Journal of Health Communication, 18(10), 1221–1234.CrossRefGoogle Scholar
  8. Danielson, W. (1956). Eisenhower’s February decision: A study of news impact. Journalism Quarterly, 33, 433–441.CrossRefGoogle Scholar
  9. Downs, G. W. J. (1976). Bureaucracy, innovation, and public policy. Lexington: Heath Com.Google Scholar
  10. Festinger, L. (1976). A theory of cognitive dissonance. Stanford: Stanford University Press.Google Scholar
  11. Grattet, R., Jenness, V., & Curry, T. R. (1998). The homogenization and differentiation of hate crime law in the United States, 1978 to 1995: Innovation and diffusion in the criminalization of bigotry. American Sociological Review, 63(2), 286–307.CrossRefGoogle Scholar
  12. Greenberg, B. S. (1964a). Diffusion of news of the Kennedy assassination. Public Opinion Quarterly, 28(2), 225–232.CrossRefGoogle Scholar
  13. Greenberg, B. S. (1964b). Person to person communication in the diffusion of news events. Journalism Quarterly, 41, 498–494.Google Scholar
  14. Hightower, J. (1973). Hard tomatoes, hard times. Cambridge: Schenkman.Google Scholar
  15. Horan, T. J. (2013). „Soft“ versus „hard“ news on microblogging networks: Semantic analysis of Twitter produsage. Information, Communication and Society, 16(1), 43–60.CrossRefGoogle Scholar
  16. Im, Y.-H., Kim, E.-M., Kim, K., & Kim, Y. (2011). The emerging mediascape, same old theories? A case study of online news diffusion in Korea. New Media & Society, 13(4), 605–625.CrossRefGoogle Scholar
  17. Jain, P., Rodrigues, T., Magno, G., Kumaraguru, P., & Almeida, V. (2011). Cross-pollination of information in online social media: A case study on popular social networks. Proceedings of SocialCom/PASSAT, 2011, 477–482.Google Scholar
  18. Karnowski, V. (2017). Diffusionstheorie (2. Aufl.). Wiesbaden: Nomos.CrossRefGoogle Scholar
  19. Kim, D. K., Chikombero, M., & Modie-Moroka, T. (2013). Innate health threat among a visibly hidden immigrant group: A formative field data analysis for HIV/AIDS prevention among Zimbabwean workers in Botswana. Journal of Health Communication, 18(2), 146–159.CrossRefGoogle Scholar
  20. Kümpel, A. S., Karnowski, V., & Keyling, T. (2015). News sharing in social media: A review of current research on news sharing users, content, and networks. Social Media+ Society, 1(2), 1.Google Scholar
  21. Larsen, O. N., & Hill, R. J. (1954). Mass media and interpersonal communication in the diffusion of a news event. American Sociological Review, 19(4), 426–433.CrossRefGoogle Scholar
  22. Lasswell, H. D. (1948). The structure and formation of communication in society. In L. Bryson (Hrsg.), The communication of ideas (S. 37–51). New York: Harper and Brothers.Google Scholar
  23. Lazarsfeld, P. F., Berelson, B., & Gaudet, H. (1944). The people’s choice. How the voter makes up his mind in a presidential campaign. New York: Duell, Sloan & Pearce.Google Scholar
  24. Lee, C. S., & Ma, L. (2012). News sharing in social media: The effect of gratifications and prior experience. Computers in Human Behavior, 28(2), 331–339.CrossRefGoogle Scholar
  25. Ma, L., Sian Lee, C., & Hoe-Lian Goh, D. (2014). Understanding news sharing in social media: An explanation from the diffusion of innovations theory. Online Information Review, 38(5), 598–615.CrossRefGoogle Scholar
  26. Markus, M. L. (1987). Toward a „critical mass“ theory of interactive media Universal access, interdependence and diffusion. Communication Research, 14(5), 491–511.CrossRefGoogle Scholar
  27. Miller, D. C. (1945). A research note on mass communication. American Sociological Review, 10(5), 691–694.Google Scholar
  28. Neuhauser, L., & Kreps, G. L. (2003). The advent of E-health. How interactive media are transforming health communication. Medien & Kommunikationswissenschaft, 51, 541–556.CrossRefGoogle Scholar
  29. Owiny, S. A., Mehta, K., & Maretzki, A. N. (2014). The use of social media technologies to create, preserve, and disseminate indigenous knowledge and skills to communities in East Africa. International Journal of Communication, 8, 234–247.Google Scholar
  30. Pach, A., Tabbusam, G., Khan, M. I., Suhag, Z., Hussain, I., Hussain, E., …, & Bhutta, Z. A. (2013). Formative research and development of an evidence-based communication strategy: The introduction of Vi typhoid fever vaccine among school-aged children in Karachi, Pakistan. Journal of Health Communication, 18(3), 306–324.Google Scholar
  31. Putte, B. van den, Yzer, M., Southwell, B. G., de Bruijn, G.-J., & Willemsen, M. C. (2011). Interpersonal communication as an indirect pathway for the effect of antismoking media content on smoking cessation. Journal of Health Communication, 16(5), 470–485.Google Scholar
  32. Rogers, E. M. (1958). A conceptual variable analysis of technological change. Rural Sociology, 23(2), 136–145.Google Scholar
  33. Rogers, E. M. (1962). Characteristics of agricultural innovators and other adopter categories. In E. Katz, E. A. Wilkening, E. M. Rogers, R. Mason, R. L. Dahling, T. W. Harrell, …, & W. Schramm (Hsrg.), Studies of innovation and of communication to the public (S. 62–97). Stanford: Institute for Communication Research Stanford University.Google Scholar
  34. Rogers, E. M. (2003). Diffusion of innovations (5. Aufl.). New York: Free Press.Google Scholar
  35. Rogers, E. M., & Seidel, N. (2002). Diffusion of news of the terrorist attacks of September 11, 2001. Prometheus, 20(3), 209–219.CrossRefGoogle Scholar
  36. Rogers, E. M., & Shoemaker, F. (1971). Communication of innovations (2. Aufl.). New York: Free Press.Google Scholar
  37. Rogers, E. M., Vaughan, P. W., Swalehe, R. M. A., Rao, N., Svenkerud, P., & Sood, S. (1999). Effects of an entertainment-education radio soap opera on family planning behavior in Tanzania. Studies in Family Planning, 30(3), 193–211.CrossRefGoogle Scholar
  38. Roncancio, A. M., Berenson, A. B., & Rahman, M. (2012). Health locus of control, acculturation, and health-related Internet use among Latinas. Journal of Health Communication, 17(6), 631–640.CrossRefGoogle Scholar
  39. Rossmann, C., & Karnowski, V. (2014). eHealth und mHealth: Gesundheitskommunikation online und mobil. In K. Hurrelmann & E. Baumann (Hrsg.), Handbuch Gesundheitskommunikation (S. 271–285). Bern: Verlag Hans Huber.Google Scholar
  40. Rudat, A., Buder, J., & Hesse, F. W. (2014). Audience design in Twitter: Retweeting behavior between informational value and followers’ interests. Computers in Human Behavior, 35, 132–139.CrossRefGoogle Scholar
  41. Ryan, B. (1948). A study in technological diffusion. Rural Sociology, 13(3), 273–285.Google Scholar
  42. Singhal, A., & Rogers, E. M. (2003). Combating AIDS: Communication strategies in action. Thousand Oak: Sage.Google Scholar
  43. Southwell, B. G. (2011). Religious congregations and health information diffusion: Implications for viral marketing and peer referral programs. Journal of Applied Communication Research, 39(4), 444–447.CrossRefGoogle Scholar
  44. Susarla, A., Oh, J.-H., & Tan, Y. (2012). Social networks and the diffusion of user-generated content: Evidence from YouTube. Information Systems Research, 23(1), 23–41.CrossRefGoogle Scholar
  45. Thomas, T. L., Schrock, C., & Friedman, D. B. (2016). Providing health consumers with emergency information: A systematic review of research examining social media use during public crises. Journal of Consumer Health on the Internet, 20(1–2), 19–40.CrossRefGoogle Scholar
  46. Wang, F.-Y., Zeng, D., Carley, K. M., & Mao, W. (2007). Social computing: From social informatics to social intelligence. IEEE Intelligent Systems, 22(2), 79–83.CrossRefGoogle Scholar
  47. Weeks, B. E., & Holbert, R. L. (2013). Predicting dissemination of news content in social media: A focus on reception, friending, and partisanship. Journalism and Mass Communication Quarterly, 90(2), 212–232.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Kommunikationswissenschaft und MedienforschungLudwig-Maximilians-Universität MünchenMünchenDeutschland

Personalised recommendations