Advertisement

Erleichterung der Anwendbarkeit von Wissen aus einem Vortraining durch eine Prozeduralisierungshilfe

  • Andrea Ohst
  • Béatrice M. E. Fondu
  • Matthias Nückles
  • Alexander Renkl
Chapter

Zusammenfassung

Inkohärentes, unstrukturiertes, intuitives Vorwissen – sogenanntes Knowledge in Pieces – kann den Erwerb eines wissenschaftlichen Konzepts deutlich einschränken. Ein Vortraining, das Knowledge in Pieces reorganisiert, ist eine geeignete Maßnahme, um den anschließenden Wissenserwerb zu erleichtern. Es kann jedoch kognitiv sehr anspruchsvoll sein, die Vortrainingsinhalte in der eigentlichen Lernphase anzuwenden, da sie dafür im Arbeitsgedächtnis aufrechterhalten und interpretiert werden müssen. Wir entwickelten eine Prozeduralisierungshilfe, welche die Inhalte des Vortrainings direkt anwendbar machen und damit die kognitive Beanspruchung reduzieren sollte. Die Wirksamkeit einer solchen Prozeduralisierungshilfe wurde an 47 Lehramtsstudierenden getestet, von denen 23 Personen in der Kontrollbedingung ein vergleichbares Pre-Training ohne Prozeduralisierungshilfe erhielten.

Die Prozeduralisierungshilfe wirkte sich positiv auf die Selbstwirksamkeitsüberzeugungen und die selbsteingeschätzten Kenntnisse aus. Zusätzlich reduzierte sie die wahrgenommene mentale Anstrengung während des Lernerfolgstests. Auswirkungen auf den Lernerfolg selbst (abgesehen von der Fähigkeit, Lernstrategien zu definieren) wurden nicht gefunden. Dies könnte daran liegen, dass auch die Kontrollgruppe ein bereits sehr wirksames Vortraining erhalten hatte.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  2. Anderson, J. R. (1987). Skill Acquisition: Compilation of weak-method problem solutions. Psychological Review, 2, 192-210.  https://doi.org/10.1037/0033-295x.94.2.192Google Scholar
  3. Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 4, 369-406.  https://doi.org/10.1037/0033-295X.89.4.369Google Scholar
  4. Anderson, J. R., Fincham, J. M., & Douglass, S. (1997). The role of examples and rules in theacquisition of a cognitive skill. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 932–945.Google Scholar
  5. Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Hillsdale, NJ: Erlbaum. Ashe, D., and Bibi, S. (2011, December). Unpacking TPACK and students’ approaches to learning: Applying knowledge in pieces to higher education teaching and learning. Paper presented at Ascilite Conference, Changing Demands, Changing Directions, Hobart, Australia, 2011, December.Google Scholar
  6. Bandura, A. (1989). Regulation of cognitive processes through perceived self-efficacy. Developmental Psychology, 25, 729–735.  https://doi.org/10.1037/0012-1649.25.5.729Google Scholar
  7. Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological review, 84, 191-215.  https://doi.org/10.1037/0033-295x.84.2.191Google Scholar
  8. Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  9. Bandura, A. (1997). Self-efficacy: The exercise of control. New York, NY: W.H. Freeman and Company.Google Scholar
  10. Bandura, A. (2006). Guide to constructing self-efficacy scales. In F. Pajares, & T. Urdan (Eds.), Self-efficacy beliefs of adolescents (pp. 307–337). Greenwich, CT: Information Age.Google Scholar
  11. Bell, B. S., & Kozlowski, S. W. J. (2002). Adaptive guidance: Enhancing self-regulation, knowledge, and performance in technology-based training. Personnel Psychology, 55, 267-306.  https://doi.org/10.1111/j.1744-6570.2002.tb00111.xGoogle Scholar
  12. Biggs, J. B., & Collis, K. F. (1982). Evaluating the quality of learning: The SOLO taxonomy (structure of the observed learning outcome). New York: Academic Press.Google Scholar
  13. Bruning, R., Dempsey, M., Kauffman, D., McKim, C., & Zumbrunn, S. (2013). Examining dimensions of self-efficacy for writing. Journal of Educational Psychology, 105, 25-38.Google Scholar
  14. Clark, R. C., Nguyen, F., & Sweller, J. (2006). Efficiency in learning. Evidence-based guidelines to manage cognitive load. San Francisco, CA: Pfeiffer.Google Scholar
  15. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  16. diSessa, A. A. (2002). Why „conceptual ecology“ is a good idea. In M. Limon, & L. Mason (Eds.), Reconsidering conceptual change. Issues in theory and practice (pp. 29–60). Dordrecht: Kluwer Academic Publishers.Google Scholar
  17. diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10, 105–225.  https://doi.org/10.1080/07370008.1985.9649008Google Scholar
  18. Fields, A. P. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage Publications.Google Scholar
  19. Gegenfurtner, A. (2011). Motivation and transfer in professional training: A meta-analysis of the moderating effects of knowledge type, instruction, and assessment conditions. Educational Research Review, 6, 153–168.  https://doi.org/10.1016/j.edurev.2011.04.001Google Scholar
  20. Glogger, I., Holzäpfel, L., Kappich, J., Schwonke, R., Nückles, M., & Renkl, A. (2013). Development and evaluation of a computer-based learning environment for teachers: Assessment of learning strategies in learning journals. Education Research International, 2013, 1–12.  https://doi.org/10.1155/2013/785065Google Scholar
  21. Gollwitzer, P. M., & Brandstätter, V. (1997). Implementation intentions and effective goal pursuit. Journal of Personality and Social Psychology 73, 186-199.  https://doi.org/10.1037/0022-3514.73.1.186Google Scholar
  22. Gollwitzer, P. M., & Sheeran, P. (2006). Implementation Intentions and Goal Achievement: A Meta-analysis – of Effects and Processes. In Advances in Experimental Social Psychology. Advances in Experimental Social Psychology Volume 38 (pp. 69–119). Elsevier.Google Scholar
  23. Gollwitzer, P. M. (1993). Goal achievement: The role of intentions. In W. Stroebe & M. Hewstone (Eds.), European review of social psychology (pp. 141–185). Chichester: Wiley.Google Scholar
  24. Gollwitzer, P. M. (1999). Implementation intentions: Strong effects of simple plans. American Psychologist, 54, 493–503.  https://doi.org/10.1037/0003-066x.54.7.493Google Scholar
  25. Harlow, D. B., Bianchini, J. A., Swanson, L. H., & Dwyer, H. A. (2013). Potential teachers’ appropriate and inappropriate application of pedagogical resources in a model-based physics course: A „knowledge in pieces“ perspective on teacher learning. Journal of Research in Science Teaching, 50, 1098–1126.  https://doi.org/10.1002/tea.21108Google Scholar
  26. Hmelo-Silver, C. E., & Green Pfeffer, M. (2004). Comparing expert and novice understanding of a complex system from the perspective of structures, behaviors, and functions. Cognitive Science, 28, 127-138.  https://doi.org/10.1207/s15516709cog2801_7Google Scholar
  27. Ineson, E. M., Jung, T., Hains, C., & Kim, M. (2013). The influence of prior subject knowledge, prior ability and work experience on self-efficacy. Journal of Hospitality, Leisure, Sport & Tourism Education, 12, 59–69.  https://doi.org/10.1016/j.jhlste.2012.11.002Google Scholar
  28. Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology Research and Development, 48, 63–85.  https://doi.org/10.1007/bf02300500Google Scholar
  29. Kaup, B., Zwaan, R. A. & Lüdtke, J. (2007). The experiential view of language comprehension: How is negation represented? In F. Schmalhofer & C. A. Perfetti (Eds.), Higher level language processes in the brain: Inference and comprehension processes (pp. 255-288). Mahwah, NJ: Erlbaum.Google Scholar
  30. Kaup, B., Yaxley, R. H., Madden, C. J., Zwaan, R. A., & Lüdtke, J. (2007). Experiential simulations of negated test information. Quarterly Journal of Experimental Psychology, 60, 976-990.  https://doi.org/10.1080/17470210600823512Google Scholar
  31. Kester, L., Kirschner, P. A., van Merriënboer, J. J. G., (2006). Just-in-time information presentation: Improving learning a troubleshooting skill. Contemporary Educational Psychology, 31, 167-185.  https://doi.org/10.1016/j.cedpsych.2005.04.002Google Scholar
  32. Lee, B., Cawthon, S., & Dawson, K. (2013). Elementary and secondary teacher self-efficacy for teaching and pedagogical conceptual change in a drama-based professional development program. Teaching and Teacher Education, 30, 84–98.  https://doi.org/10.1016/j.tate.2012.10.010Google Scholar
  33. MacDonald, M. C., & Just, M. A. (1989). Changes in activation levels with negation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 633-642.  https://doi.org/10.1037/0278-7393.15.4.633Google Scholar
  34. Magner, U. I., Schwonke, R., Aleven, V., Popescu, O., & Renkl, A. (2014). Triggering situational interest by decorative illustrations both fosters and hinders learning in computer-based learning environments. Learning and Instruction, 29, 141–152.  https://doi.org/10.1016/j.learninstruc.2012.07.002Google Scholar
  35. Moos, D. C., & Azevedo, R. (2009). Self-efficacy and prior domain knowledge: To what extent does monitoring mediate their relationship with hypermedia learning? Metacognition and Learning, 4, 197–216.  https://doi.org/10.1007/s11409-009-9045-5Google Scholar
  36. Ohst, A., Fondu, B. M. E., Glogger, I., Nückles, M., & Renkl, A. (2014). Preparing learners with partly incorrect intuitive prior knowledge for learning. Frontiers in Psychology, 5.  https://doi.org/10.3389/fpsyg.2014.00664
  37. Ohst, A., Glogger, I., Nückles, M., & Renkl, A. (2015). Helping preservice teachers with inaccurate and fragmentary prior knowledge to acquire conceptual understanding of psychological principles. Psychology, Learning and Teaching, 14, 5-25.  https://doi.org/10.1177/1475725714564925Google Scholar
  38. Özdemir, G., & Clark, D. B. (2007). An overview of conceptual change theories. Eurasia Journal of Mathematics, Science & Technology Education, 3, 351–361.Google Scholar
  39. Ozdemir, O. F. (2013). Transfer and conceptual change: The change process from the theoretical perspectives of coordination classes and phenomenological primitives. Instructional Science, 41, 81–103.  https://doi.org/10.1007/s11251-012-9219-4Google Scholar
  40. Paas, F., Touvinen, J. E., Tabber, H., & van Gerven, P. W. M. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38, 63–71.  https://doi.org/10.1207/s15326985ep3801_8Google Scholar
  41. Paas, F. G. W. C., & van Merriënboer, J. J. G. (1993). The efficiency of instructional conditions: An approach to combine mental effort and performance measures. Human Factors, 35, 737–743.  https://doi.org/10.1177/001872089303500412Google Scholar
  42. Paas, F. G. W. C., & van Merriënboer, J. J. G. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive-load approach. Journal of Educational Psychology, 86, 122–133.  https://doi.org/10.1037/0022-0663.86.1.122Google Scholar
  43. Pajares, F. (1996). Self-efficacy beliefs and mathematical problem-solving of gifted students. Contemporary Educational Psychology, 21, 325–344.  https://doi.org/10.1006/ceps.1996.0025Google Scholar
  44. Paris, S. G., Newman, R. S., & McVey, K. A. (1982). Learning the functional significance of mnemonic actions: A microgenetic study of strategy acquisition. Journal of Experimental Child Psychology, 34, 490–509.  https://doi.org/10.1016/0022-0965(82)90073-xGoogle Scholar
  45. Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63, 167–199.  https://doi.org/10.3102/00346543063002167Google Scholar
  46. Poole, M., Okeafor, K., & Sloan, E. (1989). Teachers’ interactions, personal efficacy, and change implementation. Paper presented at the Annual Meeting of the American Educational Research Association, San Francisco.Google Scholar
  47. Renkl, A. (2014). Toward an Instructionally Oriented Theory of Example-Based Learning. Cognitive Science, 38, 1-37.  https://doi.org/10.1111/cogs.12086Google Scholar
  48. Renkl, A., Gruber, H., & Mandl, H. (1996). Inert knowledge: Analyses and remedies. Educational Psychologist, 31, 115–121.  https://doi.org/10.1207/s15326985ep3102_3Google Scholar
  49. Schunk, D. H., & Pajares, F. (2002). The development of academic self-efficacy. In A. Wigfield & J. Eccles (Eds.), Development of achievement motivation (pp. 16–31). San Diego: Academic Press.Google Scholar
  50. Schunk, D. H. (1996). Goal and self-evaluative influences during children’s cognitive skill learning. American Educational Research Journal, 33, 359–382.  https://doi.org/10.3102/00028312033002359Google Scholar
  51. Schunk, D. H. (1998). Teaching elementary students to self-regulate practice of mathematical skills with modeling. In D. H. Schunk & B. J. Zimmerman (Eds.), Self-regulated learning: From teaching to self-reflective practice (pp. 137–159). New York: Guilford.Google Scholar
  52. Sinatra, G. M. (2010). The „warming trend“ in conceptual change research: The legacy of Paul R. Pintrich. Educational Psychologist, 40, 107–115.  https://doi.org/10.1207/s15326985ep4002_5Google Scholar
  53. Sinatra, G. M., Brem, S. K., & Evans, E. M. (2008). Changing minds? Implications of conceptual change for teaching and learning about biological evolution. Evolution: Education and Outreach, 1, 189–195.  https://doi.org/10.1007/s12052-008-0037-8Google Scholar
  54. Sitzmann, T., & Yeo, G. (2013). A meta-analytic investigation of the within-person self-efficacy domain: Is self-efficacy a product of past performance or a driver of future performance? Personnel Psychology, 66, 531–568.  https://doi.org/10.1111/peps.12035Google Scholar
  55. Smylie, M. (1988). The enhancement function of staff development: Organizational and psychological antecedents to individual teacher change. American Educational Research Journal, 25, 1–30.  https://doi.org/10.3102/00028312025001001Google Scholar
  56. Van Gog, T., & Paas, F. (2008). Instructional efficiency: Revisiting the original construct in educational research. Educational Psychologist, 43, 16-26.  https://doi.org/10.1080/00461520701756248Google Scholar
  57. Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4, 45-69.  https://doi.org/10.1016/0959-4752(94)90018-3Google Scholar
  58. Wäschle, K., Allgaier, A., Lachner, A., Fink, S., & Nückles, M. (2014). Procrastination and selfefficacy: Tracing vicious and virtuous circles in self-regulated learning. Learning and Instruction, 29, 103–114.  https://doi.org/10.1016/j.learninstruc.2013.09.005Google Scholar
  59. Weinstein, C. E., & Mayer, R. E. (1986). The teaching of learning strategies. In C. M. Wittrock (Ed.), Handbook of research in teaching (pp. 315–327). New York, NY, US: Macmillan Publishing Company.Google Scholar
  60. Williams, T., & Williams, K. (2010). Self-efficacy and performance in mathematics: Reciprocal determinism in 33 nations. Journal of Educational Psychology, 102, 453–466.  https://doi.org/10.1037/a0017271Google Scholar
  61. Yeo, G. B., & Neal, A. (2004). A multilevel analysis of effort, practice, and performance: Effects of ability, conscientiousness, and goal orientation. Journal of Applied Psychology, 89, 231-247.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Andrea Ohst
    • 1
  • Béatrice M. E. Fondu
    • 2
  • Matthias Nückles
    • 2
  • Alexander Renkl
    • 2
  1. 1.Staatliches Schulamt KarlsruheSchulpsychologische BeratungsstelleKarlsruheDeutschland
  2. 2.Albert-Ludwigs-Universität FreiburgFreiburgDeutschland

Personalised recommendations