Advertisement

Physiologie der Bewegungen

  • Hans Mohr
  • Peter Schopfer
Chapter
Part of the Springer-Lehrbuch book series (SLB)

Zusammenfassung

Diese Bewegungsform ist bei den höheren Pflanzen selten. Lediglich Rhizome, d. h. mehr oder minder horizontal wachsende, unterirdische Sproßachsen, führen freie Ortsbewegungen aus. Wie das monopodiale Rhizom von Paris quadrifolia zeigt (Abb. 31.1), treten die als Blütentriebe in Erscheinung tretenden Seitenachsen von Jahr zu Jahr an verschiedenen Stellen auf. Das Rhizom stirbt im Laufe der Jahre von hinten her ab; vorne — mit dem apikalen Vegetationspunkt — wächst es weiter. Analoge „Wandervorgänge“ beobachtet man auch bei anderen Pflanzengruppen, z. B. bei manchen Lebermoosen oder beim Rhizom von Farnen. Physiologisch sind diese Bewegungsformen kaum untersucht.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

a. Freie Ortsbewegung begeißelter Zellen

  1. Checcucci A (1976) Molecular sensory physiology of Euglena. Naturwiss 63: 412–417PubMedCrossRefGoogle Scholar
  2. Foster KW et al. (1984) A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature 311: 756–759PubMedCrossRefGoogle Scholar
  3. Haupt W (1977) Bewegungsphysiologie der Pflanzen. Thieme, StuttgartGoogle Scholar
  4. Kleinig H, Sitte P (1992) Zellbiologie — ein Lehrbuch, 3. Auflage. Fischer, Stuttgart New YorkGoogle Scholar

b. Phototropismus

  1. Bergman K et al. (1969) Phycornyces. Bacteriol Reviews 33: 99–157Google Scholar
  2. Briggs WR, Baskin TI (1988) Phototropism in higher plants — controversies and caveats. Bot Acta 101: 133–139Google Scholar
  3. Bruinsma J (1977) Hormonal regulation of phototropism in dicotyledonous seedlings. In: Pilet PE (ed) Plant growth regulation. Springer, Berlin Heidelberg New YorkGoogle Scholar
  4. Darwin C (1880) The power of movements in plants. Murray, LondonGoogle Scholar
  5. Hasegawa K, Sakoda M (1988) Distribution of endogenous indole-3-acetic acid and growth inhibitor(s) in phototropically responding oat coleoptiles. Plant Cell Physiol 29: 1159–1164Google Scholar
  6. Haupt W (1977) Bewegungsphysiologie der Pflanzen. Thieme, StuttgartGoogle Scholar
  7. Iino M (1990) Phototropism: Mechanisms and ecological implications. Plant Cell Environ 13: 633–650CrossRefGoogle Scholar
  8. Kadota A, Wada M, Furuya M (1985) Phytochrome-mediated polarotropism of Adiantum capillus-veneris L. protonemata as analyzed by microbeam irradiation with polarized light. Planta 165: 30–36PubMedCrossRefGoogle Scholar
  9. Steinhardt AR, Popescu T, Fukshansky L (1989) Is the dichroic photoreceptor for phycomyces located at the plasma membrane or at the tonoplast? Photochem Photobiol 49: 79–87CrossRefGoogle Scholar
  10. Togo S, Hasegawa K (1991) Phototropic stimulation does not induce unequal distribution of indole-3-acetie acid in maize coleoptiles. Physiol Plant 81: 555–557CrossRefGoogle Scholar
  11. Woitzik F, Mohr H (1988) Control of hypocotyl phototropism by phytochrome in a dicotyledonous seedling (Sesamum indicum L.). Plant Cell Environ 11: 653–661CrossRefGoogle Scholar

c. Gravitropismus

  1. Evans ML (1991) Gravitropism: Interaction of sensitivity, modulation and effector redistribution. Plant Physiol 95: 1–5PubMedCentralPubMedCrossRefGoogle Scholar
  2. Hensel W (1990) Gravitropismus der Pflanzen. Neue Modelle zu einem alten Problem. Naturwiss Rdsch 43: 135–140Google Scholar
  3. McClure BA, Guilfoyle T (1989) Rapid distribution of auxin-regulated RNAs during gravitropism. Science 243: 91–93PubMedCrossRefGoogle Scholar
  4. Parker KE, Briggs WR (1991) The transport of indole-3-acetic acid during gravitropism in intact maize coleoptiles. Plant Physiol 94: 1763–1769CrossRefGoogle Scholar
  5. Poff KL, Martin HV (1989) Site of graviperception in roots: A re-examination. Physiol Plant 76: 451–455PubMedGoogle Scholar
  6. Sievers A (1984) Sinneswahrnehmung bei Pflanzen: Graviperception. Westdeutscher Verlag, OpladenCrossRefGoogle Scholar
  7. Sievers A, Schröter K (1971) Versuch einer Kausalanalyse der geotropischen Reaktionskette im Chara-Rhizoid. Planta 96: 339–353CrossRefGoogle Scholar
  8. Wilkins MB (1978) Gravity-sensing guidance mechanisms in roots and shoots. Bot Mag Tokyo, Special Issue 1: 255–277Google Scholar
  9. Woitzik F, Mohr H (1988 b) Control of hypocotyl gravitropism by phytochrome in a dicotyledonous seedüng (Sesamum indicum L.). Plant Cell Environ 11: 663–668CrossRefGoogle Scholar

d. Weitere Bewegungsvorgänge

  1. Bünning E (1953) Entwicklungs-und Bewegungsphysiologie der Pflanze. Springer, BerlinCrossRefGoogle Scholar
  2. Darwin C (1880) The power of movements in plants. Murray, LondonGoogle Scholar
  3. Fleurat-Lessard P (1988) Structural and ultrastructural features of cortical cells in motor organs of sensitive plants. Biol Rev 63: 1–22CrossRefGoogle Scholar
  4. Galston AW, Satter RL (1976) Light, clocks and ion flux: An analysis of leaf movement. In: Smith H (ed) Light and plant development. Butterworths, London Boston Sydney, pp 159–184CrossRefGoogle Scholar
  5. Haupt W (1977) Bewegungsphysiologie der Pflanzen. Thieme, StuttgartGoogle Scholar
  6. Haupt W (1982) Light-mediated movement of chloroplasts. Annu Rev Plant Physiol 33: 205–233CrossRefGoogle Scholar
  7. Haupt W, Scheuerlein R (1990) Chloroplast movement. Plant Cell Environ 13: 595–614CrossRefGoogle Scholar
  8. Kallas P, Meier-Augenstein W, Schildknecht H (1989) Turgorine — neue Phytohormone. Naturwiss Rdsch 42: 309–317Google Scholar
  9. Ma YZ, Yen LF (1988) The presence of mysosin and actin in pollen and their role in cytoplasmic streaming. Acta Bot Sin 30: 285–291Google Scholar
  10. Ma YZ, Yen LF (1989) Actin and myosin in pea tendrils. Plant Physiol 89: 586–589PubMedCentralPubMedCrossRefGoogle Scholar
  11. Picton JM, Steer MW (1982) A model for the mechanism of tip extension in pollen tubes. J Theoret Biol 98: 15–20CrossRefGoogle Scholar
  12. Roblin G (1979) Mimosa pudica: A model for the study of the excitability in plants. Biol Reviews 54: 135–153CrossRefGoogle Scholar
  13. Sanders LC, Lord EM (1989) Directed movement of latex particles in the gynoecia of three species of flowering plants. Science 243: 1606–1608PubMedCrossRefGoogle Scholar
  14. Satter RL, Galston AW (1981) Mechanisms of control of leaf movements. Annu Rev Plant Physiol 32: 83–110CrossRefGoogle Scholar
  15. Seitz K (1979) Cytoplasmic streaming and cyclosis of chloroplasts. In: Encycl Plant Physiol NS, Vol 7. Springer, Berlin Heidelberg New York, pp 150–169Google Scholar
  16. Senn G (1908) Die Gestalts-und Lageveränderung der Pflanzenchromatophoren. Engelmann, LeipzigGoogle Scholar
  17. Werker E, Shak T, Koller D (1991) Photobiological and structural studies of light-driven movements in the solartracking leaf of Lupinus palaestinus Bioss. (Fabaceae). Bot Acta 104: 144–156Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Hans Mohr
    • 1
  • Peter Schopfer
    • 1
  1. 1.Lehrstuhl für BotanikBiologisches Institut II der UniversitätFreiburg i. Br.Deutschland

Personalised recommendations