Advertisement

Physiologie der Entwicklung

  • Hans Mohr
  • Peter Schopfer
Chapter
Part of the Springer-Lehrbuch book series (SLB)

Zusammenfassung

Lebendige Systeme müssen als in beständiger Entwicklung befindliche Systeme aufgefaßt werden. Diese Feststellung gilt für die Einzelzelle ebenso wie für das vielzellige System. Wenn man einen Organismus kennzeichnen will, muß man deshalb seine gesamte Ontogenie (Individualentwicklung) ins Auge fassen, nicht nur bestimmte Ausschnitte aus dieser Ontogenie.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

a. Grundlegende Gesichtspunkte

  1. Bell PR (1970) The archeogoniate revolution. Sci Progr Oxf 58: 27–435Google Scholar
  2. Furuya M (1978) Photocontrol of developmental processes in fern gametophytes. Bot Mag Tokyo Special Issue 1: 219–242Google Scholar
  3. Girnish TJ (ed) (1986) On the economy of plant form and function. Cambridge University Press, CambridgeGoogle Scholar
  4. Klekowski EJ (1988) Mutation, developmental selection, and plant evolution. Columbia University Press, New YorkGoogle Scholar
  5. Miller JH (1968) Fern gametophytes as experimental material. Bot Reviews 34: 361–440CrossRefGoogle Scholar
  6. Mohr H (1972) Lectures on photomorphogenesis (chapter 21: Examples of blue-light-mediated photomorphogenesis). Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar

b. Wachstum

  1. Bertalanffy LV (1942) Theoretische Biologie, Bd. II. Bornträger, BerlinGoogle Scholar
  2. Erickson RO, Silk WK (1980) The kinematics of plant growth. Sci Amer 242(may issue): 102–113CrossRefGoogle Scholar
  3. Poethig S (1989) Genetic mosaics and cell lineage analysis in plants. Trends Genet 5: 273–277PubMedCrossRefGoogle Scholar
  4. Sinnot EW (1960) Plant Morphogenesis. McGraw Hill, New York Toronto LondonGoogle Scholar
  5. Thompson DW (1942) On growth and form, 2d ed. Cambridge University Press, CambridgeGoogle Scholar
  6. Vöchting H (1878) Über Organbildung im Pflanzenreich. Cohen, BonnGoogle Scholar

c. Differenzierung

  1. Fukuda H (1989) Cytodifferentiation in isolated single cells. Bot Mag Tokyo 102: 491–501CrossRefGoogle Scholar
  2. Green PB, Poethig RS (1982) Biophysics of the extension and initiation of plant organs. In: Subtelny S, Green PB (eds) Developmental order: its origin and regulation. Liss, New York, pp 485–509Google Scholar
  3. Heslop-Harrison J (1967) Differentiation. Annu Rev Plant Physiol 18: 325–348CrossRefGoogle Scholar
  4. Maclean N, Hall BK (1987) Cell commitment and differentiation. Cambridge University Press, Cambridge New YorkGoogle Scholar
  5. Okamuro JK, Goldberg RB (1989) Regulation of plant gene expression: General principles. In: Marcus A (ed) The biochemistry of plants. A comprehensive treatise, Vol 15. Academic Press, San Diego New York, pp 1–82Google Scholar
  6. Phillips R (1980) Cytodifferentiation. Int Rev Cytol Suppl 11A: 55–70Google Scholar
  7. Stange L (1965) Plant cell differentiation. Annu Rev Plant Physiol 16: 119–140CrossRefGoogle Scholar
  8. Vodkin LO (1989) Transposable element influence on plant gene expression and variation. In: Marcus A (ed) The biochemistry of plants. A comprehensive treatise, Vol 15. Academic Press, San Diego New York, pp 83–112Google Scholar

d. Musterbildung und Morphogenese

  1. Barlow PW, Carr DJ (1984) Positional controls in plant development. Cambridge University Press, CambridgeGoogle Scholar
  2. Cline MG (1991) Apical dominance. Bot Reviews 57: 318–358CrossRefGoogle Scholar
  3. Coen ES (1991) The role of homeotic genes in flower development and evolution. Annu Rev Plant Physiol Plant Mol Biol 42: 241–279CrossRefGoogle Scholar
  4. Green PB (1985) Surface of the shoot apex: A reinforom field theory for phyllotaxis 1 ClineGoogle Scholar
  5. Lamoreaux RJ, Chaney WR, Brown KM (1978) The plastochron index: A review after two decades of use. Amer J Bot 65: 586–593CrossRefGoogle Scholar
  6. Maksymowych R (1973) Analysis of leaf development. Cambridge University Press, LondonGoogle Scholar
  7. Meyerowitz EM (1987) Arabidopsis thaliana. Annu Rev Genet 21: 93–111PubMedCrossRefGoogle Scholar
  8. Mitchison GJ (1977) Phyllotaxis and the Fibonacci series. Science 196: 270–275PubMedCrossRefGoogle Scholar
  9. Poethig, RS (1990) Phase change and the regulation of shoot morphogenesis in plants. Science 250: 923–930PubMedCrossRefGoogle Scholar
  10. Roberts DW (1984) A chemical contact pressure model for phyllotaxis. J theoret Biol 108: 481–490CrossRefGoogle Scholar
  11. Rutishauser R (1982) Der Plastochronquotient als Teil einer quantitativen Blattstellungsanalyse bei Samenpflanzen. Beitr Biol Pflanzen 57: 323–357Google Scholar
  12. Sachs T (1991) Pattern formation in plant tissues. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  13. Sattler R (ed) (1982) Axioms and principles of plant construction. Martinus Nijhoff — Dr W Junk Publ, The Hague Boston New YorkGoogle Scholar
  14. Sinnot EW (1960) Plant morphogenesis. McGraw Hill, New York Toronto LondonGoogle Scholar
  15. Sinnot EW (1963) The problem of organic form. Yale University Press, New HavenGoogle Scholar
  16. Steeves TA, Sussex IM (1989) Patterns in plant development. 2. ed. Cambridge University Press, Cambridge New YorkCrossRefGoogle Scholar
  17. Sussex IM (1989) Developmental programming of the shoot meristem. Cell 56: 225–229PubMedCrossRefGoogle Scholar
  18. Williams RF (1975) The shoot apex and leaf growth. Cambridge University Press, LondonCrossRefGoogle Scholar

e. Tumorbildung bei Pflanzen

  1. Ahuja MR (1965) Genetic control of tumor formation in higher plants. Quart Rev Biol 40: 329–340CrossRefGoogle Scholar
  2. Anders F (1981) Erb-und Umweltfaktoren im Ursachengefüge des neoplastischen Wachstums nach Studien an Xi-phophorus. In: Verhandlungen der Gesellschaft Deutscher Naturforscher und Ärzte 1980, pp 106–119. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  3. Bishop JM (1982) Oncogenes. Scientific American 246 (march issue), pp 69–78CrossRefGoogle Scholar
  4. Chilton MD et al. (1977) Stable incorporation of plasmid DNA into higher plant cells: The molecular basis of crown gall tumorigenesis. Cell 11: 263–271PubMedCrossRefGoogle Scholar
  5. Ichikawa T, Syono K (1991) Tobacco genetic tumors. Plant Cell Physiol 32: 1123–1128Google Scholar
  6. Kado CI (1991) Molecular mechanisms of crown gall tumorigenesis. Crit Rev Plant Sci 10: 1–32CrossRefGoogle Scholar
  7. Kahl G, Schell JS (1982) Molecular biology of plant tumors. Academic Press, New YorkGoogle Scholar
  8. Powell A, Gordon MP (1989) Tumor formation in plants. In: Marcus A (ed) The biochemistry of plants. A comprehensive treatise, Vol 15. Academic Press, San Diego New York, pp 617–651Google Scholar
  9. Schell J (1982) The Ti-plasmids of Agrobacterium tumefaciens. In: Encycl Plant Physiol NS, Vol 14B. Springer, Berlin Heidelberg New York, pp 455–474Google Scholar

f. Morphogenese bei Acetabularia

  1. Hämmerling J (1963) Nucleo-cytoplasmic interactions in Acetabularia and other cells. Annu Rev Plant Physiol 14: 65–92CrossRefGoogle Scholar
  2. Schmid R (1984) Blue light effects on morphogenesis and metabolism in Acetabularia. In: Senger H (ed) Blue light effects in biological systems. Springer, Berlin Heidelberg New York, pp 419–432CrossRefGoogle Scholar
  3. Schweiger HG (1976) Nucleocytoplasmic interaction in Acetabularia. In: King RC (ed) Handbook of genetics, Vol 5. Plenum, New York London, pp 451–475CrossRefGoogle Scholar
  4. Zeitsche K (1968) Steuerung der Zelldifferenzierung bei der Grünalge Acetabularia. Biol Rdsch 6: 97–112Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Hans Mohr
    • 1
  • Peter Schopfer
    • 1
  1. 1.Lehrstuhl für BotanikBiologisches Institut II der UniversitätFreiburg i. Br.Deutschland

Personalised recommendations