Advertisement

Einflüsse äußerer Faktoren auf die Atmung

  • Walter Stiles
  • Hermann Ullrich
  • B. Huber
  • H. Ziegler
  • P. J. Syrett
  • H. Lundegårdh
  • Dorothy F. Forward
  • G. Rosenstock
  • A. Ried
  • U. Hagen
  • H. Langendorff
  • J. C. Fidler
  • L. J. Audus
Chapter
  • 64 Downloads
Part of the Encyclopedia of Plant Physiology / Handbuch der Pflanzenphysiologie book series (532, volume 12)

Abstract

In respiration all plants exchange gases with the surrounding medium, and with the exception of a few microorganisms this exchange consists of an absorption of oxygen by the plant from the medium and an evolution of carbon dioxide from the plant into the medium. With most vascular plants the medium is a double one, air and soil, exceptions being found in a few completely aerial plants and in water plants which may or may not be rooted in soil and which may be completely or only partially submerged. With most of the Bryophyta the bulk of the gaseous exchange takes place between the plant and air, the rhizoids attaching the plants to the soil forming only a very small portion of the plant. Apart from a comparatively small number of terrestrial forms the algae live in an aqueous medium which may be a weaker or stronger solution, mainly of inorganic salts, according to whether the plants live in fresh or salt water. The media with which gaseous exchange takes place are thus air, soil, fresh water and salt water, according to the species.

Literature

  1. Adamson, R. S.: Note on the roots of Terminalia arjuna Bedd. New Phytologist 9, 150–156 (1910).CrossRefGoogle Scholar
  2. Arber, A.: Water Plants. Cambridge: University Press 1920.Google Scholar
  3. Barker, J., and L. W. Mapson: Studies in the respiratory and carbohydrate metabolism of plant tissues. VII. Experimental studies with potato tubers of an inhibition of the respiration and of a “block” in the tricarboxylic acid cycle induced by “oxygen poisoning”. Proc. Roy. Soc. Lond., Ser. B 143, 523–549 (1955).CrossRefGoogle Scholar
  4. Beauchamp, R. S. A.: Hydrology of Lake Tanganyika. Internat. Rev. Hydrobiol. 39, 316–353 (1939).CrossRefGoogle Scholar
  5. Beauchamp, R. S. A.: Hydrological data from Lake Nyasa. J. Ecology 41, 226–239 (1953).CrossRefGoogle Scholar
  6. Blackman, F. F.: Experimental researches on vegetable assimilation and respiration. II. On the path of gaseous exchange between aerial leaves and the atmosphere. Philosophic. Trans. Roy. Soc. Lond., Ser. B 186, 503–562 (1895).CrossRefGoogle Scholar
  7. Beauchamp, R. S. A.: Analytic studies in plant respiration. Cambridge: University Press 1954.Google Scholar
  8. Boswell, J. G., and G. C. Whiting: A study of the polyphenol oxidase system in potato tubers. Ann. of Bot., N. S. 2, 847–864 (1938).Google Scholar
  9. Boswell, J. G., and G. C. Whiting: Observations on the anaerobic respiration of potato tubers. Ann. of Bot., N. S. 4, 257–268 (1940)CrossRefGoogle Scholar
  10. Boynton, D., and O. C. Compton: Normal seasonal changes of oxygen and carbon dioxide percentages in gas from the larger pores of three orchard subsoils. Soil Sci. 57, 107–117 (1944).CrossRefGoogle Scholar
  11. Boynton, D., and W. Reuther: A way of sampling gases in dense subsoil and some of its advantages and limitations. Proc. Amer. Soc. Soil Sci. 3, 37–42 (1938).CrossRefGoogle Scholar
  12. Boynton, D., and W. Reuther: Seasonal variation of oxygen and carbon dioxide in three different orchard soils during 1938 and its possible significance. Proc. Amer. Soc. Horticult. Sci. 36, 1–6 (1939).Google Scholar
  13. Brierley, J. K.: Seasonal fluctuations in the oxygen and carbon dioxide concentrations in beech litter with reference to the salt uptake of beech mycorrhizas. J. Ecology 43, 404–408 (1955).CrossRefGoogle Scholar
  14. Briggs, G. E., and R. N. Robertson: Diffusion and absorption in disks of plant tissue. New Phytologist 47, 265–283 (1948).CrossRefGoogle Scholar
  15. Brown, H. T., and F. Escombe: Static diffusion of gases and liquids in relation to the assimilation of carbon and translocation in plants. Philosophic. Trans. Roy. Soc. Lond., Ser. B 193, 223–291 (1900).CrossRefGoogle Scholar
  16. Buckingham, E.: Contributions to our knowledge of the aeration of soils. U.S. Bur. Soils, Bull. 1904, No 25.Google Scholar
  17. Bünning, E.: In den Wäldern Nord-Sumatras. Bonn: Dümmler 1947.Google Scholar
  18. Burton, W. G.: Studies on the dormancy and sprouting of potatoes. I. The oxygen content of the potato tuber. New Phytologist 49, 121–134 (1950).CrossRefGoogle Scholar
  19. Burton, W. G.: Studies on the dormancy and sprouting of potatoes. II. The carbon dioxide content of the potato tuber. New Phytologist 50, 287–296 (1952).CrossRefGoogle Scholar
  20. Caldwell, J.: Studies in the respiration of apples at various pressures of oxygen. J. of Exper. Bot. 7, 326–334 (1956).CrossRefGoogle Scholar
  21. Chevillard, I., F. Hamon, A. Mayer et L. Plantefol: Action de l’oxygène libre sur la respiration des tissus végétaux aeriens. Ann. de Physiol. 6, 464–505 (1930).Google Scholar
  22. Choudhury, J. K.: Researches on plant respiration. V. On the respiration of some storage organs in different oxygen concentrations. Proc. Roy. Soc. Lond., Ser. B 127, 238–257 (1939).CrossRefGoogle Scholar
  23. Daubemire, R. F.: Plants and Environment. New York: John Wiley & Sons 1947.Google Scholar
  24. Denny, F. E.: Respiration of Gladiolus corms during prolonged dormancy. Contrib. Boyce Thompson Inst. 10, 453–460 (1939).Google Scholar
  25. Denny, F. E.: Respiration rate of plant tissue under conditions for the progressive partial depletion of the oxygen supply. Contrib. Boyce Thompson Inst. 14, 419–442 (1947).Google Scholar
  26. Denny, F. E.: Effect upon plant respiration caused by changes in the oxygen concentration in the range immediately below that of normal air. Contrib. Boyce Thompson Inst. 15, 61–70 (1948).Google Scholar
  27. Devaux, H.: Du mécanisme des échanges gazeux chez les plantes aquatiques. Ann. Sci. natur. Bot., Sér. VII 9, 35–179 (1889).Google Scholar
  28. Devaux, H.: Porosité du fruit des Cucurbitacées. Rev. gén. Bot. 3, 49–56 (1891).Google Scholar
  29. Evans, G. C.: Ecological studies on the rain forest of Southern Nigeria. II. The atmospheric environmental conditions. J. Ecology 27, 436–482 (1939).CrossRefGoogle Scholar
  30. Faber, F. C. v.: Pflanzengeographie auf physiologischer Grundlage. By A. F. W. Schum-per, 3. Aufl., revised by F. C. v. Faber. Jena: Gustav Fischer 1935.Google Scholar
  31. Fehér, D.: Untersuchungen über die Kohlenstoffernährung des Waldes. Flora (Jena) 21, 316–333 (1927).Google Scholar
  32. Fenn, W. O.: The oxygen consumption of frog nerve during stimulation. J. Gen. Physiol. 10, 767–779 (1927).PubMedCrossRefGoogle Scholar
  33. Forward, D. F.: The respiration of barley seedlings in relation to oxygen supply. I. An analytical account of experiments. New Phytologist 50, 297–324 (1952).CrossRefGoogle Scholar
  34. Gerard, R. W.: Oxygen diffusion into cells. Biol. BuU. 60, 245–268 (1931).CrossRefGoogle Scholar
  35. Goddard, D. R.: The respiration of cells and tissues. In R. Höber: Physical chemistry of cells and tissues. London: J. & A. Churchill 1947.Google Scholar
  36. Goebel, K.: Pflanzenbiologische Schilderungen, Teil 1. Marburg: H. G. Elwert 1889.Google Scholar
  37. Gustafson, F. G.: Influence of oxygen and carbon dioxide concentrations on the respiration of tomato fruits. Amer. J. Bot. 23, 441–445 (1936).CrossRefGoogle Scholar
  38. Hamon, F.: Influence de l’acide carbonique sur la respiration des tissus végétaux et de la levure. Ann. de Physiol. 12, 940–982 (1936).Google Scholar
  39. Hasse, P., u. F. Kirchmeyer: Die Bedeutung der Bodenatmung für die CO2-Ernährung der Pflanzen. Z. Pflanzenernährg, Düng. u. Bodenkde A 10, 257–298 (1927).CrossRefGoogle Scholar
  40. Heath, O. V. S.: Studies in stomatal behaviour. V. The rôle of carbon dioxide in the light response of stomata. J. of Exper. Bot. 1, 29–62 (1950).Google Scholar
  41. Huber, B.: Zur Physik der Spaltöffnungstranspiration. I. Das maximale Diffusionsvermögen von Porenmembranen. (Vorläufige Mitteilung.) Ber. dtsch. bot. Ges. 46, 610–620 (1928).Google Scholar
  42. Jaccard, P.: Variations de l’anhydrate carbonique au voisinage de la végétation à l’air libre et en milieu confiné. Bull. Soc. Chim. biol. Paris 12, 156–170 (1930).Google Scholar
  43. James, W. O.: Plant Respiration. Oxford: Clarendon Press 1953.Google Scholar
  44. James, W. O., and H. Beevers: The respiration of Arum spadix. A rapid respiration resistant to cyanide. New Phytologist 49, 353–374 (1950).CrossRefGoogle Scholar
  45. Jeffreys, H.: Some problems of evaporation. Philosophic. Mag. 35, 270–280 (1918).Google Scholar
  46. Johannsen, W.: Über den Einfluß hoher Sauerstoffspannung auf die Kohlensäureausscheidung einiger Keimpflanzen. Unters. bot. Inst. Tübingen 1, 686–717 (1885).Google Scholar
  47. Kidd, F.: The controlling influence of carbon dioxide. III. The retarding effect of carbon dioxide on respiration. Proc. Roy. Soc. Lond., Ser. B 89, 136–156 (1915).CrossRefGoogle Scholar
  48. Kidd, F., C. West and M.N. Kidd: Gas storage of fruit. Food Investigation Board Special Rep. No 30, 87 pp. London: H. M. Stationery Office 1927.Google Scholar
  49. Krogh, A.: Rate of diffusion of oxygen through animal tissues. J. of Physiol. 52, 391–408 (1919).Google Scholar
  50. Laing, H. E.: The composition of the internal atmosphere of Nuphar advenum and other water plants. Amer. J. Bot. 27, 861–868 (1940).CrossRefGoogle Scholar
  51. Livingston, E., and J. Franck: Assimilation and respiration of excised leaves at high concentrations of carbon dioxide. Amer. J. Bot. 27, 449–458 (1940).CrossRefGoogle Scholar
  52. Lloyd, F. E.: The physiology of stomata. Washington, D.C.: Carnegie Institution of Washington 1908.Google Scholar
  53. Lundegårdh, H.: Kreislauf der Kohlensäure in der Natur. Jena: Gustav Fischer 1924.Google Scholar
  54. Lundegårdh, H.: Environment and Plant Development. English Translation by E. Ashby. London: Edward Arnold & Co. 1931.Google Scholar
  55. Magness, J. R.: Composition of gases in intercellular spaces of apples and potatoes. Bot. Gaz. 70, 308–316 (1920).CrossRefGoogle Scholar
  56. Maige, G.: Recherches sur la respiration des différentes pièces florales. Ann. Sci. natur. Bot., Sér. IX, 14, 1–62 (1911).Google Scholar
  57. Mangin, L.: Sur la végétation dans une atmosphère viciée par la respiration. C. r. Acad. Sci. Paris 122, 747–749 (1896).Google Scholar
  58. Marsh, P. B., and D. R. Goddard: Respiration and fermentation in the carrot. I. Respiration. II. Fermentation and the Pasteur effect. Amer. J. Bot. 26, 724–728, 767–772 (1939).CrossRefGoogle Scholar
  59. McLean, R. C.: Studies in the ecology of tropical rain-forest: with special reference to the forests of South Brazil. Parti. Humidity (concluded). Part II. Illumination. J. Ecology 7, 121–172 (1919).CrossRefGoogle Scholar
  60. Overholser, E. L., M. B. Hardy and H. D. Locklin: Respiration studies of strawberries. Plant Physiol. 6, 549–557 (1931).PubMedCrossRefGoogle Scholar
  61. Pearsall, W. H.: The aquatic vegetation of the English Lakes. J. Ecology 8, 163–201 (1920).CrossRefGoogle Scholar
  62. Penman, H. L.: Gas and vapour movements in the soil. I. The diffusion of vapours through porous soils. J. Agricult. Sci. 30, 437–462 (1940a).Google Scholar
  63. Penman, H. L.: Gas and vapour movements in the soil. II. The diffusion of carbon dioxide through porous soils. J. Agricult. Sci. 30, 570–581 (1940b).CrossRefGoogle Scholar
  64. Quartley, C. E., and E. R. Turner: Further experiments on the inhibition of respiration induced by oxygen at high pressures. J. of Exper. Bot. 8, 250–255 (1957).CrossRefGoogle Scholar
  65. Richards, E. H.: Dissolved oxygen in rain water. J. Agricult. Sci. 8, 331–337 (1917).CrossRefGoogle Scholar
  66. Romell, L. G.: Luftväxlingen i marken som ekologisk faktor. Medd. Statens Skogsforsöks-anst. 19, No 2 (1922).Google Scholar
  67. Romell, L. G.: Studien över kolsyrehushållningen i mossrik tallskog. Medd. Statens Skogsforsöksanst. 24, 1–56 (1920).Google Scholar
  68. Rosene, H. F.: The effect of anoxia on water exchange and oxygen consumption of onion root tissue. J. Cellul. a. Comp. Physiol. 35, 179–193 (1950).CrossRefGoogle Scholar
  69. Russell, E. J., and A. Appleyard: The atmosphere of the soil, its composition and the causes of variation. J. Agricult. Sci. 7, 1–48 (1915).CrossRefGoogle Scholar
  70. Schenck, H.: Die Biologie der Wassergewächse. Verh. naturhist. Ver. preuss. Rheinlande, Westfalens u. d. Reg.-Bezirks Osnabrück 42, 217–380 (1885).Google Scholar
  71. Schenck, H.: Vergleichende Anatomie der submersen Gewächse. Bibl. Bot. 1, H. 1 (1886), 67 S.Google Scholar
  72. Scholander, P. F., L. van Dam and S. I. Scholander: Gas exchange in the roots of mangroves. Amer. J. Bot. 42, 93–98 (1955).CrossRefGoogle Scholar
  73. Scholander, P. F., W. Flagg, R. J. Hock and L. Irving: Studies on the physiology of frozen plants and animals in the arctic. J. Cellul. a. Comp. Physiol. 42, Suppl. 1, 1–56 (1953).CrossRefGoogle Scholar
  74. Sprague, V. G., and L. F. Graber: Physiological factors operative in ice-sheet injury in alfalfa. Plant Physiol. 15, 661–673 (1940).PubMedCrossRefGoogle Scholar
  75. Stefan, J.: Über die Verdampfung aus einem kreisförmig oder elliptisch begrenzten Becken. Ann. Phys. u. Chem. 17, 550–560 (1882).CrossRefGoogle Scholar
  76. Steward, F. C., R. Wright u. W. E. Berry: The absorption and accumulation of solutes by living cells. III. The respiration of cut discs of potato tuber in air and immersed in water, with observations upon surface: volume effects and salt accumulation. Protoplasma (Berl.) 16, 576–611 (1932).CrossRefGoogle Scholar
  77. Stich, C: Die Athmung der Pflanzen bei verminderter Sauerstoffspannung und bei Verletzungen. Flora (Jena) 74 (N. R. 49), 1–57 (1891).Google Scholar
  78. Stiles, W., and K. W. Dent: Researches on plant respiration. VI. The respiration in air and in nitrogen of thin slices of storage tissue. Ann. of Bot., N. S. 11, 1–34 (1947).Google Scholar
  79. Stocker, O.: Transpiration und Wasserhaushalt in verschiedenen Klimazonen. III. Ein Beitrag zur Transpirationsgröße im Javanischen Urwald. Jb. wiss. Bot. 81, 464–496 (1935).Google Scholar
  80. Taylor, D. L.: Influence of oxygen tension on respiration, fermentation and growth in wheat and rice. Amer. J. Bot. 29, 721–738 (1942).CrossRefGoogle Scholar
  81. Thornton, N. C: Carbon dioxide storage. III. The influence of carbon dioxide on the oxygen uptake of fruits and vegetables. Contrib. Boyce Thompson Inst. 5, 371–402 (1933).Google Scholar
  82. Carbon dioxide storage. VIII. Chemical changes in potato tubers resulting from exposure to carbon dioxide. Contrib. Boyce Thompson Inst. 7, 113–118 (1935).Google Scholar
  83. Carbon dioxide storage. X. The effect of carbon dioxide on the ascorbic acid content. respiration, and pH of asparagus tissue. Contrib. Boyce Thompson Inst. 9, 137–148 (1937).Google Scholar
  84. Troll, W., u. O. Dragendorff: Über die Luftwurzeln von Sonneratia Linn. f. und ihre biologische Bedeutung. Mit einem rechnerischen Anhang von Hans Fromherz. Planta (Berl.) 13, 311–473 (1931).CrossRefGoogle Scholar
  85. Trout, S.A.: Experiments on the storage of pears in artificial atmospheres. J. Pomol. Horticult. Sci. 8, 78–91 (1930).Google Scholar
  86. Turner, E. R., and C. E. Quartley: Studies in the respiratory and carbohydrate metabolism of plant tissues. VIII. An inhibition of respiration in peas induced by “oxygen poisoning”. J. of Exper. Bot. 7, 362–371 (1956).CrossRefGoogle Scholar
  87. Unger, F.: Beiträge zur Physiologie der Pflanzen. I. Bestimmung der in den Inter-cellulargängen der Pflanzen enthaltenen Luftmenge. Sitzgsber. Akad. Wiss., Math.-naturwiss. Kl. Wien 12, 367–378 (1854).Google Scholar
  88. Vine, H., H.A. Thompson and F. Hardy: (1) Studies on aeration of cacao soils in Trinidad. II. Soil-air composition in certain cacao soil-types in Trinidad. Trop. Agricult. 19, 215–223 (1942).Google Scholar
  89. Vine, H., H.A. Thompson and F. Hardy: (2) Studies on aeration of cacao soils in Trinidad. III. Gaseous diffusion in certain cacao soil-types in Trinidad. Trop. Agricult. 20, 13–24 (1943).Google Scholar
  90. Vlamis, J., and A. R. Davis: Germination, growth and respiration of rice and barley seedlings at low oxygen pressures. Plant Physiol. 18, 685–692 (1943).PubMedCrossRefGoogle Scholar
  91. Warburg, O.: Versuche an überlebendem Carcinomgewebe. (Methoden.) Biochem. Z. 142, 317–333 (1923).Google Scholar
  92. Wardlaw, C. W.: Studies in tropical fruits. II. Observations on internal gas concentrations in fruit. Ann. of Bot. 50, 655–676 (1936).Google Scholar
  93. Wedderburn, E. M.: The temperature of Scottish lakes. Scot. Bath. Survey 1 (1910). Ref. in W. H. Pearsall, J. Ecology 8, 170 (1920).Google Scholar
  94. Weintraub, R. L., and E. S. Johnston: The influence of light and of carbon dioxide on the respiration of etiolated barley seedlings. Smithsonian Misc. Collections 104, No 4, 16 pp. (1944).Google Scholar
  95. Willaman, J. J., and J. H. Beaumont: The effect of accumulated carbon dioxide on plant respiration. Plant Physiol. 3, 45–59 (1928).PubMedCrossRefGoogle Scholar
  96. Arnold, A.: Der Verlauf der Assimilation von Helodea canadensis unter konstanten Außenbedingungen. Planta (Berl.) 13, 529–572 (1931).CrossRefGoogle Scholar
  97. Steidle-Kühfuss, M.: Über die O2-Versorgung unterirdischer Pflanzenteile in luftarmen Bodenschichten. Diss. Naturwiss. Fak. der T. H. Stuttgart 1953.Google Scholar
  98. Wiesner, K.: Versuche über den Ausgleich des Gasdruckes in den Geweben der Pflanzen. S.-B. Akad. Wiss. Wien, math.-nat. Kl., Abt. I 79, 368 (1879).Google Scholar
  99. Wiesner, K., u. H. Molisch: Untersuchungen über die Gasbewegung in der Pflanze. S.-B. Akad. Wiss. Wien, math.-nat. Kl., Abt. I 98, 670 (1889).Google Scholar
  100. Arcichovskaja, E. V., i B. A. Rubin: Die Atmung der Pflanze als Anpassungsfunktion. Uspechi Sovrem Biol. 37, 136–157 (1954) [Russisch].Google Scholar
  101. Bailey, C. H.: Respiration of shelled corn. Univ. Minn. Agricult. Exper. Stat. Techn. Bull. 3 (1921).Google Scholar
  102. Bailey, C. H., and A. M. Gurjar: Respiration of stored wheat. J. Agricult. Res. 12, 685–713 (1918).Google Scholar
  103. Bakke, A. C., and N. L. Noecker: The relation of moisture to respiration and heating in stored oats. Iowa Agricult. Exper. Stat. Res. Bull. 165, 320–336 (1933).Google Scholar
  104. Barner, J.: Der tageszyklische Verlauf von Assimilation und Atmung im Lichte stoffproduktionsanalytischer Vergleichsuntersuchungen. Ber. dtsch. bot. Ges. 68, 271–274 (1955).Google Scholar
  105. Die Einwirkung der Staunässe auf die Organbildung und Physiologie von Holz-gewächsen unter besonderer Berücksichtigung der Darstellung anatomischer Befunde mit Hilfe von Koordinantentransformationen. Ber. dtsch. bot. Ges. 70, 3–10 (1957).Google Scholar
  106. Bastit, E.: Recherches anatomiques et physiologiques sur la tige et la feuille des mousses. Rev. gén. Bot. 3, 305–521 (1891).Google Scholar
  107. Becquerel, P.: Recherche sur la vie latente des graines. Ann. des Sci. natur. Bot., Ser. IX 5, 193–311 (1907).Google Scholar
  108. La vie latente des graines aux confins du zéro absolu. C. R. Acad. Sci. (Paris) 231, 1274–1277 (1950).Google Scholar
  109. Betz, A.: Zur Atmung wachsender Wurzelspitzen. Planta (Berl.) 46, 381–402 (1955).CrossRefGoogle Scholar
  110. Bok, R.: The influence of oxygennitrogen mixtures upon the dwarfing of Ardisia crispa (Thunb.) A. DC. Proc. Kon. Ned. Akad. v. Wetensch. 44, 2–4 (1941).Google Scholar
  111. Bosian, G.: Assimilations- und Transpirations-bestimmungen an Pflanzen des Zentralkaiser Stuhles. Z. Bot. 26, 209–284 (1933).Google Scholar
  112. Bouil-lenne, R., et F. Demaret: Échanges respiratoires en fonction de l’hydratation des tubercules maies et femelles de Bryonia dioica (L.) au cours de leur cycle végétatif. Ann. de Physiol. 11, 1089 (1935).Google Scholar
  113. Bouillenne-Walrand, M. et R.: Contribution à l’étude de la respiration en fonction de l’hydratation. Échanges respiratoires dans les racines tubérisées de Brassica Napus L. Ann. de Physiol. 2, 246–468 (1926).Google Scholar
  114. Boysen Jensen, P.: Die Elemente der Pflanzenphysiologie. Jena: Gustav Fischer 1939.Google Scholar
  115. Bünning, E.: Der tropische Regenwald. Berlin-Göttingen-Heidelberg: Springer 1956.CrossRefGoogle Scholar
  116. Candolle, M. A. P. de: Géographie botanique raisonnée. Paris: Masson & Cie. 1855.Google Scholar
  117. Cannon, W. A.: Absorption of oxygen by roots when the shoot is in darkness or light. Plant Physiol. 7, 673–684 (1932).PubMedCrossRefGoogle Scholar
  118. Conway, V.M.: Studies in the autecology of Cladium mariscus R. Br. III. The aeration of the subterranean parts of the plant. New Phytologist 36, 64–96 (1937).Google Scholar
  119. Crocker, W.: Life-span of seeds. Bot, Rev. 4, 235–274 (1938).CrossRefGoogle Scholar
  120. Crocker, W., and L. V. Barton: Physiology of seeds, 2. Aufl. Waltham (Mass.): Chronica Botanica Comp. 1957.Google Scholar
  121. Crocker, W., and G. T. Harrington: Catalase and oxidase content of seeds in relation to their dormancey age, vitality and respiration. J. Agricult. Res. 15, 137–174 (1918).Google Scholar
  122. Darlot, P.: Variation de composition des gaz internes d’une plant aquatique au cours d’un cycle de 24 heures. C. r. Acad. Sci. Paris 232, 544–545 (1951a).Google Scholar
  123. Darlot, P.: Rev. gén. Bot. 58, 129–148 (1951b).Google Scholar
  124. Domien, F.: Influence de la déshydratation sur la respiration des feuilles des végétaux aériens. Rev. gén. Bot. 56, 285–317 (1949).Google Scholar
  125. Duvel, J. W.T.: Preservation of seeds buried in the soil. Bot. Gaz. 37, 146–147 (1904).CrossRefGoogle Scholar
  126. Ensgraber, A.: Über den Einfluß der Antrocknung auf die Assimilation und Atmung von Moosen und Flechten. Flora (Jena) 141, 432–475 (1954).Google Scholar
  127. Evenari, M., G. Neumann u. Sh. Klein: The influence of red and infrared light on the respiration of photo-blastic seeds. Physiol. Plantarum (Copenh.) 8, 33–47 (1955).CrossRefGoogle Scholar
  128. Faust, M. E.: Germinating of Populus grandidentata and P. tremuloides, with particular reference to oxygen consumption. Bot. Gaz. 97, 808–821 (1935).CrossRefGoogle Scholar
  129. Fraymouth, J.: The moisture relations of terrestrial algae. Ann. of Bot. 42, 75–100 (1928).Google Scholar
  130. Frietinger, G.: Untersuchungen über die Kohlensäureaufnahme und Sauerstoffabgabe bei keimenden Samen. Flora (Jena) 122, 167–201 (1927).Google Scholar
  131. Geiger, M.: Beitrag zur Kenntnis der Physiologie keimender Samen. I. Einfluß der Quellungsbedingungen auf den Gasaustausch. Jb. wiss. Bot. 69, 350–356 (1928).Google Scholar
  132. Gessner, F.: Hydrobotanik. Berlin: Deutscher Verlag der Wissenschaften 1955.Google Scholar
  133. Gessner, F., u. F. Pannier: Der Sauerstoffverbrauch der Wasserpflanzen bei verschiedenen Sauerstoffspannungen. Hydrobiologia (Den Haag) 10, 323–351 (1958).CrossRefGoogle Scholar
  134. Girton, R. E., and E. R. Park: Respiration studies on germinating white-oak acorns. Proc. Indian Acad. Sci. 51, 83–86(1942).Google Scholar
  135. Godlewski, E.: Beiträge zur Kenntnis der Pflanzenatmung. Jb. wiss. Bot. 13, 491–543 (1882).Google Scholar
  136. Goebel, K.: Über die Luftwurzeln von Sonneratia. Ber. dtsch. bot, Ges. 4, 249–255 (1886).Google Scholar
  137. Goo, M.: A physiological study of germination of coniferous seeds by the application of water absorption curve. Bull. Tokyo Univ. Forest 51, 159–236 (1956).Google Scholar
  138. Haberlandt, G.: Physiologische Pflanzenanatomie, 6. Aufl. Leipzig: Engelmann 1924.Google Scholar
  139. Härtel, O.: Die Bedeutung der Bodenkohlensäure für die grüne Pflanze. Jb. wiss. Bot. 87, 173–210 (1938).Google Scholar
  140. Häusermann, E.: Über die Benetzungsgröße der Mesophyllinterzellularen. Ber. Schweiz, bot. Ges. 54, 541–578 (1944).Google Scholar
  141. Harder, R.: Beiträge zur Kenntnis des Gaswechsels der Meeresalgen. Jb. wiss. Bot. 56, 254–298 (1915).Google Scholar
  142. Haylett, D. G.: Studies on the effect of humidity on the respiration of plant parts. Cornell Univ. Ph. D. Thesis 1925.Google Scholar
  143. Huber, B., u. W. v. Jazewitsch: Zur Entwicklungsphysiologie der Prunus-Rinde. Acta bot. néerl. 4, 385–388 (1955).Google Scholar
  144. Iljin, W. S.: Einfluß des Welkens auf die Atmung der Pflanzen. Flora (Jena) 116, 379–403 (1923).Google Scholar
  145. Irmscher, E.: Über die Resistenz der Laubmoose gegen Austrocknung und Kälte. Jb. wiss. Bot. 50, 387–449 (1912).Google Scholar
  146. Jackson, W. T.: The role of adventitious roots in recovery of shoots following flooding of the original root systems. Amer. J. Bot. 42, 816–819 (1955).CrossRefGoogle Scholar
  147. Jackson, W. T.: Flooding injury studied by approach-graft and split root system techniques. Amer. J. Bot. 43, 496–502 (1956a).CrossRefGoogle Scholar
  148. Jackson, W. T.: The relative importance of factors causing injury to shoots of flooded tomato plants. Amer. J. Bot. 43, 637–639 (1956b).CrossRefGoogle Scholar
  149. James, W.O.: Plant Respiration. Oxford: Clarendon Press 1953.Google Scholar
  150. James, W. O., and A. L.: The respiration of barley germinating in the dark. New Phytologist 39, 145–176 (1940).CrossRefGoogle Scholar
  151. Jauerka, O.: Die ersten Stadien der CO2-Ausscheidung bei quellenden Samen. Cohns Beitr. Biol. Pflanz. 11, 193–248 (1912).Google Scholar
  152. Joensson, B.: Recherches sur la respiration et l’assimilation des Muscinées. C. r. Acad. Sci. Paris 119, 440–443 (1894).Google Scholar
  153. Johansson, N.: Zur Kenntnis der Kohlensäureassimilation einiger Farne. Sv. bot. Tidskr. 17, 215–223 (1923).Google Scholar
  154. Jones, H.A.: Physiological study of maple seeds. Bot. Gaz. 69, 127–152 (1920).CrossRefGoogle Scholar
  155. Jongh, Ph. de: On the symbiosis of Ardisia crispa (Thunb.) A. DC. Verh. Kon. Akad. Ned. v. Wetensch. II 37, 1–78 (1938).Google Scholar
  156. Jost, L.: Ein Beitrag zur Kenntnis der Atmungsorgane der Pflanzen. Bot. Ztg 45, 601–606, 617–628, 633–642 (1887).Google Scholar
  157. Jumelle, H.: Recherches physiologiques sur les lichens. Rev. gén. Bot. 4, 49–64, 103–121, 159–175, 220–231, 259–272, 305–320 (1892).Google Scholar
  158. Kaltwasser, J.: Assimilation und Atmung von Submersen als Ausdruck ihrer Ent-quellungsresistenz. Protoplasma (Berl.) 29, 498–535 (1938).CrossRefGoogle Scholar
  159. Kandler, O.: Untersuchungen über den Zusammenhang zwischen Atmungsstoffwechsel und Wachstumsvorgängen bei in vitro kultivierten Maiswurzeln. Z. Naturforsch. 5b, 203–211(1950).Google Scholar
  160. Kniep, H.: Über Assimilation und Atmung der Meeresalgen. Internat. Rev. d. Hydrobiol. 7, 1–38 (1915/16).CrossRefGoogle Scholar
  161. Kniep, H.: Über den Gasaustausch der Wasserpflanzen. Ein Beitrag zur Kritik der Blasenzählmethode. Jb. wiss. Bot. 56, 460–509 (1915).Google Scholar
  162. Kolkwitz, R.: Über die Atmung ruhender Samen. Ber. dtsch. bot. Ges. 19, 285–287 (1901).Google Scholar
  163. Kraft, M.: Die Atmung dürreempfindlicher und dürreresistenter Getreidesorten bei verschiedener Wasserversorgung. Diss. Darmstadt 1944. (Auszugsweise in Stocker 1948.)Google Scholar
  164. Kramer, P. J.: Causes of injury to plants resulting from flooding of the soil. Plant Physiol. 26, 722–736 (1951).PubMedCrossRefGoogle Scholar
  165. Kramer, P. J., and W. T. Jackson: Causes of injury to flooded tobacco plants. Plant Physiol. 29, 241–245 (1954).PubMedCrossRefGoogle Scholar
  166. Kramer, P. J., W. S. Riley and T. T. Bannister: Gas exchange of cypress knees. Ecology 33, 117–121 (1952).CrossRefGoogle Scholar
  167. Kursanow, A. L.: Die Bedeutung der Isotopen und anderer neuen biologischen Arbeitsmethoden für die Entscheidung landwirtschaftlicher Fragen. Izv. Akad. Nauk SSSR., Ser. Biol. 1, 8–19 (1954) [Russisch].Google Scholar
  168. Kursanow, A. L., W. Blago-weschenski i M. Kasakowa: Der Einfluß der Bodenfeuchtigkeit auf die physiologischen Prozesse und die chemische Zusammensetzung der Zuckerrübe. Bjul. Moskov. Obsc. Ispyt. Prir. 42, 171 (1933).Google Scholar
  169. Laing, H. E.: The composition of the internal atmosphere of Nuphar advenum and other water plants. Amer. J. Bot. 27, 861–868 (1940).CrossRefGoogle Scholar
  170. Langdon, S. C: Carbon monoxide, occurrence free in Kelp. J. Amer. Chem. Soc. 39, 149–156 (1917).CrossRefGoogle Scholar
  171. Leyton, L.: The influence of aeration on root growth. Imp. Forestry Inst. Oxford, Ann. Rep. 32, 11–12 (1956).Google Scholar
  172. Leyton, L.: Root growth of tree seedlings in relation to aeration. Harvard Univ. Symp. on Tree Physiology. April 1957.Google Scholar
  173. Macdougal, D. T., and E. B. Working: The Pneumatic System of Plants, especially Trees. Washington: Carnegie Inst. 1933.Google Scholar
  174. Maquenne, L.: Recherches sur la germination. Ann. agronom. 26, 321–332 (1900).Google Scholar
  175. Mayer, A., et L. Plantefol: Teneur en eau des plantes et assimilation chlorophyllienne. Étude de l’assimilation des mousses reviviscentes. Ann. de Physiol. 2, 564–605 (1926).Google Scholar
  176. Merry, J., and D. R. Goddard: A respiratory study of barley grain and seedlings. Proc. Rochester Acad. Sci. 8, 28–44 (1941).Google Scholar
  177. Miehe, H.: Weitere Untersuchungen über die Bakteriensymbiose bei Ardisia crispa. II. Die Pflanze ohne Bakterien. Jb. wiss. Bot. 58, 29–65 (1919).Google Scholar
  178. Montfort, C: Die Trockenresistenz der Gezeitenpflanzen und die Frage der Übereinstimmung von Standort und Vegetation. Ber. dtsch. bot. Ges. 55, (85)–(95) (1937).Google Scholar
  179. Montfort, C, u. H. Hahn: Atmung und Assimilation als dynamische Kennzeichen abgestufter Trockenresistenz bei Farnen und höheren Pflanzen. Planta (Berl.) 38, 503–515 (1950).CrossRefGoogle Scholar
  180. Neger, F. W.: Die Wegsamkeit der Laubblätter für Gase. Flora (Jena) 11, 152–161 (1918).Google Scholar
  181. Nius, E.: Untersuchungen über den Einfluß des Interzellularvolumens und der Öffnungsweite der Stomata auf die Luftwegigkeit der Laubblätter. Jb. wiss. Bot. 74, 33–126 (1931).Google Scholar
  182. Overkott, O.: Über die Aufnahme von Kohlensäure durch die Wurzeln grüner Pflanzen. Bot. Archiv 39, 389–443 (1939).Google Scholar
  183. Parker, J.: The effects of flooding in the transpiration and survival of some southeastern forest tree species. Plant Physiol. 25, 453–460 (1950).PubMedCrossRefGoogle Scholar
  184. Parker, J.: Desiccation in conifer leaves: anatomical changes and determination of the lethal level. Bot. Gaz. 114, 189–198 (1952).CrossRefGoogle Scholar
  185. Pisek, A., u. E. Winkler: Wassersättigungsdefizit, Spaltenbewegung und Photosynthese. Protoplasma (Wien) 46, 597–611 (1956).CrossRefGoogle Scholar
  186. Plantefol, L.: Etude biologique de l’Hypnum triquetrum. Ann. des Sci. natur., Sér. Bot. et Zool. 10, 1–263 (1927).Google Scholar
  187. Qvam, O.: Zur Atmung des Getreides. Jber. Ver. angew. Bot. 4, 70–87 (1906).Google Scholar
  188. Raalte, M. H. van: On the oxygen supply of rice-roots. Ann. Jard. Bot. Buitenzorg 50, 99–114 (1940).Google Scholar
  189. Raciborski, M.: Ein Inhaltskörper des Leptoms. Ber. dtsch. bot. Ges. 16, 52–63 (1898).Google Scholar
  190. Ragai, H., and W. E. Loomis: Respiration of maize grain. Plant Physiol. 29, 49–55 (1954).PubMedCrossRefGoogle Scholar
  191. Ramshorn, K.: Zur partiellen „aeroben” Gärung in der Wurzel von Vicia faba. I. Flora (Jena) 145, 1–36 (1958).Google Scholar
  192. Ried, A.: Photosynthese und Atmung bei xerostabilen und xerolabilen Krustenflechten in der Nachwirkung vorausgegangener Entquellungen. Planta (Berl.) 41, 436–438 (1953).CrossRefGoogle Scholar
  193. Roberts, D. W. A.: Physiological and biochemical studies in plant metabohsm. V. The effect of changes in soil water content on the physiological heterogenity in the first leaf of wheat. Canad. J. Bot. 30, 50–66 (1952).CrossRefGoogle Scholar
  194. Romell, L. G.: Die Bodenventilation als ökologischer Faktor. Medd. fr. Statens Skogsforsöksanst 19, 125 (1922) [Schwedisch].Google Scholar
  195. Ruhland, W., u. K. Ramshorn: Aerobe Gärung in aktiven pflanzlichen Meristemen. Planta (Berl.) 28, 471–514 (1938).CrossRefGoogle Scholar
  196. Samish, R. H.: Dormancy in woody plants. Annual Rev. Plant Physiol. 5, 183–204 (1954).CrossRefGoogle Scholar
  197. Schenk, H.: Über das Aerenchym, ein dem Kork homologes Gewebe bei Sumpfpflanzen. Jb. wiss. Bot. 20, 526–574 (1889).Google Scholar
  198. Schimper, A. F. W., u. F. C. Faber: Pflanzengeographie auf physiologischer Grundlage, 3. Aufl. Jena: Gustav Fischer 1935.Google Scholar
  199. Scholander, P. F., L. van Dam and S. I. Scholander: Gas exchange in the roots of mangroves. Amer. J. Bot. 42, 92–98 (1955).CrossRefGoogle Scholar
  200. Schroeder, G.: Über die Austrocknungsfähigkeit der Pflanzen. Unters. bot. Inst. Tübingen 2, 1–53 (1886).Google Scholar
  201. Schroeder, J.: Über natürliche und künstliche Änderungen des Interzellularvolumens bei Laubblättern. Beitr. Biol. Pflanz. 25, 75–124 (1937).Google Scholar
  202. Seybold, A.: Träufelspitzen? Beitr. Biol. Pflanz. 33, 237–264 (1957).Google Scholar
  203. Shirk, H. G., and C. O. Appleman: Oxygen respiration in wheat grain in relation to freezable water. Amer. J. Bot. 27, 613–619 (1940).CrossRefGoogle Scholar
  204. Sierp, H.: Untersuchungen über die Kohlensäureabgabe bei keimenden Erbsensamen. Flora (Jena) 118/119, 476–502 (1925).Google Scholar
  205. Simonis, W.: Untersuchungen zum Dürreeffekt. I. Morphologische Struktur, Wasserhaushalt, Atmung und Photosynthese feucht und trocken gezogener Pflanzen. Planta (Berl.) 40, 313–332 (1952).CrossRefGoogle Scholar
  206. Smith, A. J. M., and R. Gane: Respiration of pea seeds. Rep. Food Invest. Bd. (London) 1934, 147–152 (1935).Google Scholar
  207. Smyth, R.: A contribution to the physiology and ecology of Peltigera canina and P. polydactyla. Ann. of Bot. 48, 781–818 (1934).Google Scholar
  208. Stalfelt, M. G.: Die Spaltöffnungsweite als Assimilationsfaktor. Planta (Berl.) 23, 715–759 (1935).CrossRefGoogle Scholar
  209. Stalfelt, M. G. Der Gasaustausch der Moose. Planta (Berl.) 27, 30–60 (1937).CrossRefGoogle Scholar
  210. Stalfelt, M. G. Der Gasaustausch der Flechten. Planta (Berl.) 29, 11–31 (1938).CrossRefGoogle Scholar
  211. Stocker, O.: Physiologische und ökologische Untersuchungen an Laub- und Strauchflechten. Flora (Jena) 21, 334–415 (1927).Google Scholar
  212. Stocker, O.: Beiträge zu einer Theorie der Dürre-resistenz. Planta (Berl.) 35, 445–466 (1948).CrossRefGoogle Scholar
  213. Stocker, O.: Grundriß der Botanik. Berlin-Göttingen-Heidelberg: Springer 1952.CrossRefGoogle Scholar
  214. Tieghem, P. van: Traité de Botanique, 2. Aufl. Paris: F. Savy 1891.Google Scholar
  215. Troll, W.: Über die sogenannten Atemwurzeln der Mangroven. Ber. dtsch. bot. Ges. 48, (81)–(99) (1930).Google Scholar
  216. Troll, W., u. O. Dragendorff: Über die Wurzeln von Sonneratia Linn. f. und ihre biologische Bedeutung. Planta (Berl.) 13, 311–473 (1931).CrossRefGoogle Scholar
  217. Turkina, W. H., i I. M. Dubinina: Einige Besonderheiten in der Atmung der Leitbündel. Dokl. Akad. Nauk SSSR. 95, 199–202 (1953) [Russisch].Google Scholar
  218. Vallance, K. B., and D. A. Coult: The composition of the gas contained in the vesicles of Fucus vesiculosus. Ann. of Bot., N. S. 15, 409–416 (1951).Google Scholar
  219. Wager, H. G.: The effect of artificial wilting on the sugar-content and respiration rate of maturing green peas. New Phytologist 53, 354–363 (1954).CrossRefGoogle Scholar
  220. Walter, H.: Der Wasserhaushalt der Pflanze in quantitativer Betrachtung. München-Freising: Datterer & Cie. 1925.Google Scholar
  221. Westermaier, M.: Zur Kenntnis der Pneumatophoren. Freiburg, Schweiz: Veith 1900.Google Scholar
  222. Willenbrink, J.: Über die Hemmung des Stofftransportes in den Siebröhren durch lokale Inaktivierung verschiedener Atmungsenzyme. Planta (Berl.) 48, 269–342 (1957).CrossRefGoogle Scholar
  223. Ziegler, H.: Über den Gaswechsel verholzter Achsen. Flora (Jena) 144, 229–250 (1957).Google Scholar
  224. Ziegler, H.: Über die Atmung und den Stofftransport in den isolierten Leitbündeln der Blattstiele von Heracleum Mantegazzianum Somm. et Lev. Planta (Berl.) 51, 186–200 (1958).CrossRefGoogle Scholar
  225. Altmann, S. M., and E. M. Crook: Activation of enzymes by chelating agents. Nature (Lond.) 171, 76–77 (1953).CrossRefGoogle Scholar
  226. Anderson, I., and H. J. Evans: Effect of manganese and certain other metal cations on isocitric dehydrogenase and malic enzyme activities in Phaseolus vulgaris. Plant Physiol. 31, 22–28 (1956).PubMedCrossRefGoogle Scholar
  227. Becking, J. H.: On the mechanism of ammonium ion uptake by maize roots. Acta bot. neerl. 5, 1–79 (1956).Google Scholar
  228. Bergmann, L.: Stoffwechsel und Mineralsalzernährung einzelliger Grünalgen. II. Vergleichende Untersuchungen über den Einfluß mineralischer Faktoren bei heterotropher und mixotropher Ernährung. Flora (Jena) 142, 493–539 (1955).Google Scholar
  229. Boyer, P. D., H. A. Lardy and P. H. Phillips: Further studies on the rôle of potassium and other ions on the phosphorylation of the adenylic system. J. of Biol. Chem. 149, 529–541 (1943).Google Scholar
  230. Brooks, M. M.: Comparative studies on respiration. VIII. The respiration of Bacillus subtilis in relation to antagonism. J. Gen. Physiol. 2, 5–15 (1919).PubMedCrossRefGoogle Scholar
  231. Brown, J. C, and S. B. Hendricks: Enzymatic activities as indications of copper and iron deficiencies in plants. Plant Physiol. 27, 651–660 (1952).PubMedCrossRefGoogle Scholar
  232. Brown, J. C, and R. A. Steinberg: Iron and copper enzymes in leaf lamina of tobacco when deficient in micronitruents or grown on calcareous and organic soils. Plant Physiol. 28, 488–494 (1953).PubMedCrossRefGoogle Scholar
  233. Burkhardt, H.: Beiträge zum Eisen-Mangan-Antagonismus der Pflanzen. Flora (Jena) 143, 1–30 (1956).Google Scholar
  234. Butler, G. W.: The connection between respiration and salt accumulation. I. Preliminary note. Physiol. Plantarum (Copenh.) 6, 662–671 (1953).CrossRefGoogle Scholar
  235. Cook, S. F.: The effect of certain heavy metals on respiration. J. Gen. Physiol. 9, 575–601 (1925).CrossRefGoogle Scholar
  236. Daniel, A.-L.: Stoffwechsel und Mineralsalzernährung einzelliger Grünalgen. III. Atmung und oxydative Assimilation von Chlorella. Flora (Jena) 143, 31–66 (1956).Google Scholar
  237. Ducet, G., and E. J. Hewitt: Relation of molybdenum status and nitrogen supply to respiration in cauliflower leaves. Nature (Lond.) 173, 1141–1143 (1954).CrossRefGoogle Scholar
  238. Emerson, R.: The effect of certain respiratory inhibitors on the respiration of Chlorella. J. Gen. Physiol. 10, 469–477 (1927).PubMedCrossRefGoogle Scholar
  239. Epstein, E.: Cation-induced respiration in barley roots. Science (Lancaster, Pa.) 120, 987–988 (1954).CrossRefGoogle Scholar
  240. Ernster, L.: Organization of mitochondrial DPN-linked systems. Exper. CeU Res. 10, 704–732 (1956).CrossRefGoogle Scholar
  241. Florell, C.: Calcium, mitochondria and anion uptake. Physiol. Plantarum (Copenh.) 10, 781–790 (1957).CrossRefGoogle Scholar
  242. Fogg, G.E., and M. Wolfe: The nitrogen metabolism of the blue-green algae (Myxophyceae). Symposia Soc. Gen. Microbiol. 4, 99–125 (1954).Google Scholar
  243. Good, N.: Reduction of ferricyanide by algal suspensions. Plant Physiol. 30, 483–484 (1955).PubMedCrossRefGoogle Scholar
  244. Goucher, C. G., and W. Kocholaty: Effect of various ions on the respiration of Azotobacter. J. of Biol. Chem. 211, 613–620 (1954).Google Scholar
  245. Green, D.E.: Organization in relation to enzyme function. Symposia Soc. Exper. Biol. 10, 30–49 (1957).Google Scholar
  246. Gregory, F. G., and P. K. Sen: Physiological studies in plant nutrition. VI. The relation of respiration rate to the carbohydrate and nitrogen metaboHsm of the barley leaf as determined by nitrogen and potassium deficiency. Ann. of Bot., N. S. 1, 521–562 (1937).Google Scholar
  247. Gustafson, F. G.: Comparative studies in respiration. IX. The effects of antagonistic salts on the respiration of Aspergillus niger. J. Gen. Physiol. 2, 17–24 (1919).PubMedCrossRefGoogle Scholar
  248. Hamner, K. C.: Effects of nitrogen supply on rates of photosynthesis and respiration in plants. Bot. Gaz. 97, 744–764 (1936).CrossRefGoogle Scholar
  249. Handley, R., and R. Overstreet: Respiration and salt absorption by excised barley roots. Plant Physiol. 30, 418–425 (1955).PubMedCrossRefGoogle Scholar
  250. Harley, J. L., C. C. McCready and J. A. Geddes: The salt respiration of excised beech mycorrhizas. I. The development of the respiratory response to salts. New Phytologist 53, 427–444 (1954).CrossRefGoogle Scholar
  251. Hattori, A.: Studies on the metabolism of urea and other nitrogenous compounds in Chlorella ellipsoidea. J. of Biochem. 44, 253–273 (1957).Google Scholar
  252. Heilbrunn, L. V.: An Outline of General Physiology. Philadelphia: W. B. Saunders Company 1943.Google Scholar
  253. Hewitt, E. J.: The rôle of the mineral elements in plant nutrition. Annual Rev. Plant Physiol. 2, 25–52 (1951).CrossRefGoogle Scholar
  254. Hoagland, D. R.: Lectures on the Inorganic Nutrition of Plants. Waltham, Mass.: Chronica Botanica 1944.CrossRefGoogle Scholar
  255. Honda, S. I.: The salt respiration and phosphate content of barley roots. Plant Physiol. 31, 62–69 (1956).PubMedCrossRefGoogle Scholar
  256. Honda, S. I., and R. N. Robertson: Studies in the metabolism of plant cells. XL The Donnan equilibration and the ionic relations of plant mitochondria. Austral. J. Biol. Sci. 9, 305–320 (1956).Google Scholar
  257. Humphries, E. C: The absorption of ions by excised root systems. II. Observations on roots of barley grown in solutions deficient in phosphorus, nitrogen or potassium. J. of Exper. Bot. 2, 344–379 (1951).CrossRefGoogle Scholar
  258. Ingram, M.: A theory relating the action of salts on bacterial respiration to their influence on the solubility of proteins. Proc. Roy. Soc. Lond., Ser. B 143, 181–201 (1947).CrossRefGoogle Scholar
  259. Jacobi, B.: Über den Einfluß verschiedener Substanzen auf die Atmung und Assimilation submerser Pflanzen. Flora (Jena) 86, 289–327 (1899).Google Scholar
  260. Jacobson, L., and L. Ordin: Organic acid metaboHsm and ion absorption in roots. Plant Physiol. 29, 70–75 (1954).PubMedCrossRefGoogle Scholar
  261. Jacobson, L., R. Overstreet, H. M. King and R. Handley: A study of potassium absorption by barley roots. Plant Physiol. 25, 639–647 (1950).PubMedCrossRefGoogle Scholar
  262. James, W.O.: The use of respiratory inhibitors. Ann. Rev. Plant Physiol. 4, 59–90 (1953).CrossRefGoogle Scholar
  263. James, W. O., and S. E. Arney: Phosphorylation and respiration in barley. New Phytologist 38, 340–351 (1939).CrossRefGoogle Scholar
  264. Kandler, O., u. H. Ernst: Über den Einfluß organischer Säuren auf die Atmung, den Ammoniumeinbau und den Gehalt an freien Aminosäuren von Chlorella. Planta (Berl.) 46, 46–69 (1955).CrossRefGoogle Scholar
  265. Keilin, D., and E. F. Hartree: Activity of the succinic dehydrogenase-cytochrome system in different tissue preparations. Biochemic. J. 44, 205–218 (1949).Google Scholar
  266. Kessler, E.: Nitritbildung und Atmung bei der Nitratreduktion von Grünalgen. Z. Naturforsch. 7 b, 280–284 (1952).Google Scholar
  267. Kessler, E.:Über den Mechanismus der Nitratreduktion von Grünalgen. Flora (Jena) 140, 1–38 (1953).Google Scholar
  268. Klotz, I. M.: Thermodynamic and molecular properties of some metal-protein complexes. In W. D. McElroy and B. Glass (Ed.), Mechanism of Enzyme Action, p. 257–285. Baltimore, Md.: John Hopkins Univ. Press 1954.Google Scholar
  269. Korff, R. W. v.: The effects of alkali metal ions on the acetate activating enzvme system. J. of Biol. Chem. 203, 265–271 (1953).Google Scholar
  270. Kovachevich, R., and W. A. Wood: Carbohydrate metabolism by Pseudomonas fluorescens. III. Purification and properties of a 6-phospho gluconate dehydrase. J. of Biol. Chem. 213, 745–756 (1955).Google Scholar
  271. Lardy, H.A.: The influence of inorganic ions on phosphorylation reactions. In W. D. McElroy and B. Glass (Ed.), Phosphorus Metabolism, vol.1, p. 477–499. Baltimore, Md.: John Hopkins Univ. Press 1951.Google Scholar
  272. Lardy, H. A., and H. Wellman: Oxidative phosphorylations: Rôle of inorganic phosphate and acceptor systems in control of metabolic rates. J. of Biol. Chem. 195, 215–224 (1952).Google Scholar
  273. Laties, G. G.: The physical environment and oxidative and phosphorylative capacities of higher plants mitochondria. Plant Phyiol. 28, 557–575 (1953).CrossRefGoogle Scholar
  274. Lewin, J. C: Silicon metabolism in diatoms. III. Respiration and silicon uptake in Navicvla pelliculosa. J. Gen. Physiol. 39, 1–10 (1955).PubMedCrossRefGoogle Scholar
  275. Ley, J. de: Nitrogen-deficient microorganisms: A new technique in microbiological chemistry. Ann. Acad. Sci. fenn., Ser. A, II 60, 37–48 (1955).Google Scholar
  276. Libbert, E.: Die Wirkung der Alkali- und Erdalkali-Ionen auf das Wurzelwachstum unter besonderer Berücksichtigung des Ionenantagonismus und seiner Abhängigkeit von Milieufaktoren. Planta (Berl.) 41, 396–435 (1953).CrossRefGoogle Scholar
  277. Lindberg, O., and L. Ernster: Manganese, a co-factor of oxidative phosphorylation. Nature (Lond.) 173, 1038–1039 (1954).CrossRefGoogle Scholar
  278. Loneragan, J.F., and D. I. Arnon: Molybdenum in the growth and metabolism of Chlorella. Nature (Lond.) 174, 458 (1954).CrossRefGoogle Scholar
  279. Lundegårdh, H.: Mangan als Katalysator der Pflanzenatmung. Planta (Berl.) 29, 419–426 (1939).CrossRefGoogle Scholar
  280. Lunde-Gârdh, H., u. H. Burström: Atmung und Ionenaufnahme. Planta (Berl.) 18, 683–699 (1933).CrossRefGoogle Scholar
  281. Lyon, C. J.: Comparative studies on respiration. XVIII. Respiration and antagonism in Elodea. Amer. J. Bot. 8, 458–463 (1921).CrossRefGoogle Scholar
  282. Macmlllan, A.: The relation between nitrogen assimilation and respiration in Scopu-lariopsis brevicaulis. Physiol. Plantarum (Copenh.) 9, 533–545 (1956).CrossRefGoogle Scholar
  283. MacVicar, R., and R. H. Burris: The relation of boron to certain plant oxidases. Arch. of Biochem. 17, 31–39 (1948).Google Scholar
  284. Mahler, H. R., and J. L. Glenn: General significance of metalloflavo-proteins in electron transport. In W. D. McElroy and B. Glass (Ed.), Inorganic Nitrogen Metabolism, p. 575–597. Baltimore, Md.: John Hopkins Univ. Press 1956.Google Scholar
  285. Mast, S. O., and D. M. Pace: The effect of silicon on growth and respiration in Chilomonas Paramecium. J. Cellul. a. Comp. Physiol. 10, 1–13 (1937).CrossRefGoogle Scholar
  286. Mayer, A., et L. Plantefol: Influence des electrolytes sur la respiration des mousses. Ann. de Physiol. 2, 288–309 (1926).Google Scholar
  287. McElroy, W. D., and A. Nason: Mechanism of action of micronutrient elements in enzyme systems. Annual Rev. Plant Physiol. 5, 1–30 (1954).CrossRefGoogle Scholar
  288. McLean, D. J., and K. C. Fisher: The relation between oxygen consumption and the utilisation of ammonia for growth in Serratia marcescens. J. Bacter. 54, 599–607 (1947).Google Scholar
  289. Middleton, L. J.: Salt respiration in storage tissue. New Phytologist 55, 117–118 (1956).CrossRefGoogle Scholar
  290. Millbank, J. W.: Keto acids in the alga Chlorella. Ann. of Bot., N. S. 21, 23–38 (1957).Google Scholar
  291. Miller, G. W., and H. J. Evans: The effect of metal cation concentration on cytochrome oxidase activity. Plant Physiol. 30, xxix (1955).Google Scholar
  292. Miller, G. W., and H. J. Evans: The influence of salts on pyruvate kinase from tissues of higher plants. Plant Physiol. 32, 346–354 (1957).PubMedCrossRefGoogle Scholar
  293. Miller, G. W., and D.W. Thorne: Effect of bicarbonate ion on the respiration of excised roots. Plant Physiol. 31, 151–155 (1956).PubMedCrossRefGoogle Scholar
  294. Mulder, E. G.: Effects of mineral nutrition of potato plants on respiration of the tubers. Acta bot. neerl. 4, 429–451 (1955).Google Scholar
  295. Nason, A.: Metabolism of micronutrient elements in higher plants. II. Effect of copper deficiency on the isocitric enzyme in tomato leaves. J. of Biol. Chem. 198, 643–653 (1952).Google Scholar
  296. Nason, A.: Enzymatic steps in the assimilation of nitrate and nitrite in fungi and green plants. In W. D. McElroy and B. Glass (Ed.), Inorganic Nitrogen Metabolism, p. 109–136. Baltimore, Md.: John Hopkins Press 1956.Google Scholar
  297. Nason, A., N. O. Kaplan and S. P. Colowick: Changes in enzymatic constitution in zinc-deficient Neurospora. J. of Biol. Chem. 188, 397–406 (1951).Google Scholar
  298. Nason, A., H. A. Oldewurtel and L. M. Propst: Rôle of micronutrient elements in the metabolism of higher plants. I. Changes in oxidative enzyme constitution of tomato leaves deficient in micronutrient elements. Arch, of Biochem. a. Biophysics 38, 1–13 (1952).Google Scholar
  299. Neeb, O.: Hydrodictyon als Objekt einer vergleichenden Untersuchung physiologischer Größen. Flora (Jena) 139, 39–95 (1952).Google Scholar
  300. Nicholas, D. J.D.: The function of trace metals in the nitrogen metabolism of plants. Ann. of Bot., N. S. 21, 587–598 (1957).Google Scholar
  301. O’Kelley, J. C.: Boron effects on growth, oxygen uptake and sugar absorption by germinating pollen. Amer. J. Bot. 44, 239–244 (1957).CrossRefGoogle Scholar
  302. Ordin, L., and L. Jacobson: Inhibition of ion absorption and respiration in barley roots. Plant Physiol. 30, 21–27 (1955).PubMedCrossRefGoogle Scholar
  303. Pirson, A.: Ernährungs- und stoffwechselphysiologische Untersuchungen an Fontinalis und Chlorella. Z. Bot. 31, 193–267 (1937).Google Scholar
  304. Pirson, A.:Über die Wirkung von Alkalionen auf Wachstum und Stoffwechsel von Chlorella. Planta (Berl.) 29, 231–261 (1939).CrossRefGoogle Scholar
  305. Pirson, A.: Functional aspects in mineral nutrition of green plants. Annual Rev. Plant Physiol. 6, 71–114 (1955).CrossRefGoogle Scholar
  306. PiR-Son, A., u. E. Göllner: Zellphysiologische Untersuchungen an der Lemna-Wurzel bei verminderter Nitrat- und Phosphatversorgung. Z. Bot. 41, 147–176 (1953).Google Scholar
  307. Pirson, A., u. F. Seidel: Zell- und stoffwechselphysiologische Untersuchungen an der Wurzel von Lemna minor L. unter besonderer Berücksichtigung von Kalium- und Kalziummangel. Planta (Berl.) 38, 431–473 (1950).CrossRefGoogle Scholar
  308. Pirson, A., C. Tichy u. G. Wilhelmi: Stoffwechsel und Mrneralsalzernährung einzelliger Grünalgen. I. Vergleichende Untersuchungen an Mangelkulturen von Ankistrodesmus. Planta (Berl.) 40, 199–253 (1952).CrossRefGoogle Scholar
  309. Possingham, J. V.: The effect of mineral nutrition on the content of free amino-acids and amides in tomato plants. Austral. J. Biol. Sci. 9, 539–551 (1956).Google Scholar
  310. Postma, W. P.: Einige Bemerkungen über den Einfluß der Nitratreduktion auf die Atmung der Wurzeln. Proc. Acad. Sci. Amsterd. 42, 181–186 (1939).Google Scholar
  311. Pressman, B.C., and H.A. Lardy: Influence of potassium and other alkali cations on the respiration of mitochondria. J. of Biol. Chem. 197, 547–556 (1952).Google Scholar
  312. Richards, F. J.: Physiological studies in plant nutrition. VIII. The relation of respiration rate to the carbohydrate and nitrogen metabohsm of the barley leaf as determined by phosphorus and potassium supply. Ann. of Bot., N. S. 2, 491–534 (1938).Google Scholar
  313. Robertson, R. N.: Studies in the metabohsm of plant cells. I. Accumulation of chloride in plant cells and its relation to respiration. Austral. J. Exper. Biol. a. Med. Sci. 19, 265–278 (1941).CrossRefGoogle Scholar
  314. Robertson, R. N., and M. Thorn: Studies in the metabolism of plant cells. IV. The reversibility of the salt respiration. Austral. J. Exper. Biol. a. Med. Sci. 22, 305–309 (1945).CrossRefGoogle Scholar
  315. Robertson, R. N., and J. S. Turner: Studies in the metabohsm of plant cells. III. The effects of cyanide on the accumulation of potassium chloride and on respiration; the nature of the salt respiration. Austral. J. Exper. Biol. a. Med. Sci. 23, 63–73 (1945).CrossRefGoogle Scholar
  316. Robertson, R. N., and M. J. Wilkins: Studies in the metabohsm of plant cells. VII. The quantitative relation between salt accumulation and salt respiration. Austral. J. Sci. Res. B 1, 17–37 (1948).Google Scholar
  317. Robertson, R. N., M. J. Wilkins and D. C. Weeks: Studies in the metabolism of plant cells. IX. The effects of 2:4-dinitrophenol on salt accumulation and salt respiration. Austral. J. Sci. Res. B 4, 248–264 (1951).Google Scholar
  318. Schwartz, M.: The reduction of ferricyanide by living Chlorella cells. Arch. of Biochem. a. Biophysics 63, 201–211 (1956).Google Scholar
  319. Shibata, M.: Über die Wirkung der Elektrolyten auf den Sauerstoffverbrauch von Chlorella ellipsoidea. Sci. Rep. Tohoku Imp. Univ., Ser. IV 4, 431–471 (1929).Google Scholar
  320. Spencer, D.: The effect of molybdate on the activity of tomato acid phosphatases. Austral. J. Biol. Sci. 7, 151–160 (1954).Google Scholar
  321. Steward, F. C, and C. Preston: The effect of salt concentration upon the metabohsm of potato discs and the contrasted effect of potassium and calcium salts which have a common ion. Plant Physiol. 16, 85–116 (1941).PubMedCrossRefGoogle Scholar
  322. Sutcliffe, J. F.: The influence of internal ion concentration on potassium accumulation and salt respiration of red beet tissue. J. of Exper. Bot. 3, 59–76 (1952).CrossRefGoogle Scholar
  323. Sutcliffe, J. F.: The absorption of potassium ions by plasmolysed cells. J. of Exper. Bot. 5, 215–231 (1954).CrossRefGoogle Scholar
  324. Syrett, P. J.: The effect of cyanide on the respiration and the oxidative assimilation of glucose by Chlorella vulgaris. Ann. of Bot., N. S. 15, 473–492 (1951).Google Scholar
  325. Syrett, P. J.: The assimilation of ammonia by nitrogen-starved cells of Chlorella vulgaris. Ann. of Bot., N. S. 17, 1–36 (1953).Google Scholar
  326. Syrett, P. J.: The assimilation of ammonia and nitrate by nitrogen-starved cells of Chlorella vulgaris. I. Physiol. Plantarum (Copenh.) 8, 924–929 (1955).CrossRefGoogle Scholar
  327. Syrett, P. J.: The assimilation of ammonia and nitrate by nitrogen-starved cells of Chlorella vulgaris. II. and III. Physiol. Plantarum (Copenh.) 9, 19–37 (1956).CrossRefGoogle Scholar
  328. Syrett, P. J.: Respiration rate and internal adenosine triphosphate concentration in Chlorella. Arch, of Biochem. a. Biophysics 75, 117–124 (1958).CrossRefGoogle Scholar
  329. Tissières, A.: A study of the cytochrome system and some other aspects of the respiration of Aerobacter aerogenes. Biochemie. J. 50, 279–288 (1951).Google Scholar
  330. Ulrich, A.: Metabohsm of organic acids in excised barley roots as influenced by temperature, oxygen tension and salt concentration. Amer. J. Bot. 29, 220–227 (1942).CrossRefGoogle Scholar
  331. Vallee, B. L., F. L.Hoch, S. J. Adelstein and W. E. C. Wacker: Pyridine nucleotide-dependent metallodehydrogenases. J. Amer. Chem. Soc. 78, 5879–5883 (1956).CrossRefGoogle Scholar
  332. Warburg, O., u. G. Krippahl: Photochemische Wasserzersetzung durch lebende Chlorella. Z. Naturforsch. 10b, 301–304 (1955).Google Scholar
  333. Warburg, O., u. E. Negelein: Über die Reduktion der Salpetersäure in grünen Zellen. Biochem. Z. 110, 66–115 (1920).Google Scholar
  334. Waring, W. S., and C. S. Werkman: Iron deficiency in bacterial metabohsm. Arch, of Biochem. 4, 75–87 (1944).Google Scholar
  335. Weeks, D. C, and R. N. Robertson: Studies in the metabohsm of plant cells. VIII. Dependence of salt accumulation and salt respiration upon the cytochrome system. Austral. J. Sci. Res. 3, 487–500 (1950).Google Scholar
  336. Willis, A. J., and E. W. Yemm: The respiration of barley plants. VIII. Nitrogen assimilation and the respiration of the root system. New Phytologist 54, 163–181 (1955).CrossRefGoogle Scholar
  337. Wolfe, M.: The effect of molybdenum upon the nitrogen metabohsm of Anabaena cylindrica. II. A more detailed study of the action of molybdenum in nitrate assimilation. Ann. of Bot., N. S. 18, 309–325 (1954).Google Scholar
  338. Wood, J. G.: Nitrogen metabolism of higher plants. Annual Rev. Plant Physiol. 4, 1–22 (1953).CrossRefGoogle Scholar
  339. Yemm, E. W., and B. F. Folkes: The regulation of respiration during the assimilation of nitrogen in Torulopsis utilis. Biochemie. J. 57, 495–508 (1954).Google Scholar
  340. Zaleski, W., u. A. Reinhard: Die Wirkung der Mineralsalze auf die Atmung keimender Samen. Biochem. Z. 23, 193–214 (1909).Google Scholar
  341. Andel, O. M. van: The influence of salts on the exudation of tomato plants. Acta bot. néerl. 2, 445–521 (1953).Google Scholar
  342. Arisz, W. H.: Uptake and transport of chlorine by parenchymatic tissue of leaves of Vallisneria spiralis. III. Discussion of transport and uptake. Proc. Kon. Ned. Akad. v. Wetensch. 51, 25 (1948).Google Scholar
  343. Arisz, W. H.: Translocation of organic compounds. Annual Rev. Plant Physiol. 3, 109 (1952).CrossRefGoogle Scholar
  344. Arisz, W. H.: Active uptake, vacuole-secretion and plasmatic transport of chloride-ions in leaves of Vallisneria spiralis. Acta bot. néerl. 1, 506 (1953a).Google Scholar
  345. Arisz, W. H.: Absorption and transport by the tentacles of Drosera capensis. V. Influence on the transport of substances inhibiting enzymatic processes. Acta bot. néerl. 2, 74 (1953b).Google Scholar
  346. Arisz, W. H.: Significance of the symplasm theory for transport in the root. Protoplasma 46, 5–57 (1956).CrossRefGoogle Scholar
  347. Atlas, Sh. M., and E. Farber: On the molecular weight of cytochrome c from mammalian heart muscle. J. of Biol. Chem. 219, 31–37 (1956).Google Scholar
  348. Bartley, W., and R. E. Davies: Active transport of ions by subcellular particles. Biochemic. J. 57, 37–49 (1954).Google Scholar
  349. Becking, J. H.: On the mechanism of ammonium ion uptake by maize roots. Acta bot. néerl. 5, 1 (1956).Google Scholar
  350. Boeri, E., A. Ehrenberg, K. G. Paul and H. Theorell: On the compounds of ferricytochrome c appearing in acid solutions. Biochim. et Biophysica Acta 12, 273 (1953).CrossRefGoogle Scholar
  351. Boeri, E., and Luisa Tosi: The effect of salts on the autoxidation of cytochrome c. Arch. of Biochim. a. Biophysics 52, 83 (1954).CrossRefGoogle Scholar
  352. Bogen, H. J.: Zellphysiologie und Protoplasmatik. Fortschr. Bot. 14, 256–288 (1953a).Google Scholar
  353. Bogen, H. J.: Beiträge zur Physiologie der nicht-osmotischen Wasseraufnahme. Planta (Berl.) 42, 140–155 (1953b).CrossRefGoogle Scholar
  354. Briggs, G. E., and R.N. Robertson: Diffusion and absorption in discs of plant tissue. New Phytologist 47, 265 (1948).CrossRefGoogle Scholar
  355. Briggs, G. E., and R.N. Robertson: Apparent free space. Ann. Rev. of Plant Physiol. 8, 11–30 (1957).CrossRefGoogle Scholar
  356. Brouwer, R.: Water absoprtion by the roots of Vicia faba at various transpiration strengths. I. Analysis of the uptake and the factors determining it. Kon. Ned. Akad. v. Wetensch. Proc, Ser. C 56 106 (1953).Google Scholar
  357. Brouwer, R.: The regulating influence of transpiration an suction tension on the water and salt uptake by the roots of intact Vicia faba plants. Acta bot. néerl. 3 (2), 264–312 (1954).Google Scholar
  358. Brown, R.: Protoplast surface enzymes and absorption of sugar. Internat. Rev. Cytol. 1, 107–118 (1952)CrossRefGoogle Scholar
  359. Broyer, T. C.: Further observations on the absorption and translocation of inorganic ions using radioactive isotopes with plants. Plant Physiol. 25, 367 (1950).PubMedCrossRefGoogle Scholar
  360. Burström, H.: Kemisk-fysiologisk analys av kalknings- och gödslingsförsök pá sur lerjord. Medd. Central-anst. Försöksväs. Jordbr. (Stockh.) 1937, Nr 475, 3–52.Google Scholar
  361. Burström, H.: Die Rolle des Mangans bei der Nitratassimilation. Planta (Berl.) 30, 129 (1939).CrossRefGoogle Scholar
  362. Burström, H.: The colorimetric determination of nitrate in plant materials. Svensk. kem. Tidskr. 54, 139 (1942).Google Scholar
  363. Burström, H.: Die osmotischen Verhältnisse während des Streckungswachstums der Wurzeln. Lantbrukshögsk. Ann. 10, 1 (1942).Google Scholar
  364. Burström, H.: Studies in the buffer systems of cells. Ark. Bot. (Stockh.) A 32, Nr. 7 (1945a).Google Scholar
  365. Burström, H.: The nitrate nutrition of plants. Lantbrukshögsk. Ann. 13, 1–86 (1945b).Google Scholar
  366. Burström, H.: Studies on growth and metabolism of roots. X. Investigations on the calcium effect. Physiol. Plantarum (Copenh.) 7, 332 (1954).CrossRefGoogle Scholar
  367. Butler, G. W.: Ion uptake by young wheat plants. I. Time course of the absorption of potassium and chloride ions. Physiol. Plantarum (Copenh.) 6, 594 (1953a).CrossRefGoogle Scholar
  368. Butler, G. W.: Ion uptake by young wheat plants. II. The “apparent free space” of wheat roots. Physiol. Plantarum (Copenh.) 6, 617 (1953b).CrossRefGoogle Scholar
  369. Butler, G. W.: Ion uptake by young wheat plants. III. Phosphate absorption by excised roots. Physiol. Plantarum (Copenh.) 6, 637 (1953c).CrossRefGoogle Scholar
  370. Butler, G. W.: The connexion between respiration and salt accumulation. I. Preliminary note. Physiol. Plantarum (Copenh.) 6, 662 (1953d).CrossRefGoogle Scholar
  371. Danielli, J. F.: Morphological and molecular aspects of active transport. Symposia Soc. Exper. Biol. 1952, No 8, 502–515.Google Scholar
  372. Davis, R. E., and A. G. Ogston: The mechanism of acid secretion by gastric mucosa and by other tissues. Biochemic. J. 46, 324 (1950).Google Scholar
  373. Dennis, D. J., A. Rothstein and R. Meier: The relationship of the cell surface in metabolism. X. The location and function of invertase in the yeast cell. Arch. of Biochem. a. Biophysics 48, 55–62 (1954).CrossRefGoogle Scholar
  374. Epstein, E.: Passive permeation and active transport of ions in plant roots. Plant Physiol. 30, 529 (1955a).PubMedCrossRefGoogle Scholar
  375. Epstein, E., and C. E. Hagen: A kinetic study of the absorption of alkali cations by barley roots. Plant Physiol. 27, 457–471 (1951).CrossRefGoogle Scholar
  376. Ernst, E., u. L. Homola: Thermosmose und biologische Konzentrationsarbeit. Acta physiol. Acad. Sci. Hung. 3, 487–505 (1952).Google Scholar
  377. Farrant, J. L., R. N. Robertson and M. J. Wilkins: The mitochondrial membrane. Nature (Lond.) 171, 401 (1953).CrossRefGoogle Scholar
  378. Florell, C.: The influence of calcium on root mitochondria. Physiol. Plantarum (Copenh.) 9, 236–242 (1956).Google Scholar
  379. Goddard, D. R., and H. A. Stafford: Localization of enzymes in the cells of higher plants. Annual Rev. Plant Physiol. 5, 115 (1954).CrossRefGoogle Scholar
  380. Goldacre, R. J.: The folding and unfolding of protein molecules as a basis of osmotic work. Internat. Rev. Cytol. 1, 135–164 (1952).CrossRefGoogle Scholar
  381. Gorham, P. R., and K. A. Clendenning: Anionic stimulation of the Hill reaction in isolated chloroplasts. Arch. of Biochim. a. Biophysics 37, 199–223 (1952).CrossRefGoogle Scholar
  382. Hackett, D. P., and K. V. Thimann: The nature of the auxin induced water uptake by potatoe tissue. II. The relation between respiration and water absorption. Amer. J. Bot. 40, 183 (1953).CrossRefGoogle Scholar
  383. Hagen, C. E., and H. T. Hopkins: Ionic species in orthophosphate absorption by barley roots. Plant Physiol. 30, 193 (1955).PubMedCrossRefGoogle Scholar
  384. Helder, R. J.: Growth as a determining factor for the intake of anions by maize plants. Proc. Kon. Ned. Akad. v. Wetensch., Ser. C 54, 3–14 (1951).Google Scholar
  385. Helder, R. J.: Analysis of the process of anion uptake of intact maize plants. Acta bot. néerl. 1, 361 (1952).Google Scholar
  386. Hill, R.: The cytochrome b component of chloroplasts. Nature (Lond.) 174, 501–503 (1954).CrossRefGoogle Scholar
  387. Hell, R., and R. Scarisbrick: The haematin compounds of leaves. New Phytologist 50, 98–111 (1951).CrossRefGoogle Scholar
  388. Hoagland, D. R.: Lectures on the inorganic nutrition of plants. Waltham, Mass.: Chronica Botanica 1944. 226 pp.CrossRefGoogle Scholar
  389. Hoagland, D. R., and T. C. Broyer: Accumulation of salt and permeability in plant cells. J. Gen. Physiol. 25, 865 (1942).PubMedCrossRefGoogle Scholar
  390. Honda, S. I.: The salt respiration and phosphate contents of barley roots. Plant Physiol. 31, 62–70 (1956).PubMedCrossRefGoogle Scholar
  391. Honda, S. I.: Succinoxidase and cytochrome oxidase in barley roots. Plant Physiol. 30, 402–410 (1955).PubMedCrossRefGoogle Scholar
  392. Honert, T. H. van den, and J. J. M. Hooymans: On the absorption of nitrate by maize in water cultures. Acta bot néerl. 4, 376 (1955b).Google Scholar
  393. Honert, T. H. van den, J. J. M. Hooymans and W. S. Volkers: Experiments on the relation between water absorption and mineral uptake by plant roots. Acta bot. néerl. 4, 139 (1955a).Google Scholar
  394. Hope, A. B.: Salt uptake by root tissue cytoplasm: The relation between uptake and external concentration. Austral. J. Biol. Sci. 6, 396 (1953).Google Scholar
  395. Hope, A.B., and R.N. Robertson: Bioelectric experiments and the properties of plant protoplasm. Austral. J. Sci. 15, 197 (1953).Google Scholar
  396. Humphries, E. C.: Observations on roots of pea plants grown in solutions deficient in phosphor, nitrogen or potassium. J. Exper. Bot. 3, 291–309 (1952).CrossRefGoogle Scholar
  397. Hylmö, B.: Transpiration and ion absorption. Physiol. Plantarum (Copenh.) 6, 333 (1953).CrossRefGoogle Scholar
  398. Hylmö, B.: Passive components in the ion absorption of the plant. I. The zonal ion and water absorption in Brouwer’s experiments. Phvsiol. Plantarum (Copenh.) 8, 433 (1955).CrossRefGoogle Scholar
  399. Kaplan, N. O.: Thermodynamics and mechanism of the phosphate bond. In: The Enzymes (Sumner, Myrbäck), vol.2, part 1, p. 55–110. 1951.Google Scholar
  400. Keilin, D.: On cytochrome, a respiratory pigment, common to animals, yeast, and higher plants. Proc. Roy. Soc. Lond., Ser. B 98, 312–339 (1925).CrossRefGoogle Scholar
  401. Keilin, D., and E. F. Hartree: Cytochrome and cytochrome oxidase. Proc. Roy. Soc. Lond., Ser. B 127, 167 (1939).CrossRefGoogle Scholar
  402. Kmetec, E., and E. H. Newcomb: Properties of particulate fractions isolated from homogenates of peanut cotyledons. Amer. J. Bot. 43, 333–341 (1956).CrossRefGoogle Scholar
  403. Kramer, P. J.: Effects of respiration inhibitors on accumulation of radioactive phosphorus by roots of loblolly pine. Plant Physiol. 26, 30 (1951).PubMedCrossRefGoogle Scholar
  404. Kramer, P. J., and H. Wiebe: Longitudinal gradients of P32 absorption in roots. Plant Physiol. 27, 661 (1952).PubMedCrossRefGoogle Scholar
  405. Lemberg, R., and J. W. Legge: Hematin compounds and bile pigments. New York 1949.Google Scholar
  406. Lowenhaupt, B.: The transport of calcium and other cations in submerged aquatic Plants. University of California, Radiation Lab. Contr. No. W-7405-eng-48, 1955.Google Scholar
  407. Lundegårdh, H.: Die quantitative Spektralanalyse der Elemente, Bd. 1 u. 2. Jena: Gustav Fischer 1929–1934.Google Scholar
  408. Lundegårdh, H.: Die Nährstoffaufnahme der Pflanze. Jena: Gustav Fischer 1932.Google Scholar
  409. Lundegårdh, H.: Untersuchungen über die Anionenatmung. Biochem. Z. 290, 104 (1937).Google Scholar
  410. Lundegårdh, H.: Ionenkonzentration und Ionenaustausch in der Grenzfläche Protoplasma: Lösung. Biochem. Z. 298, 51 (1938).Google Scholar
  411. Lundegårdh, H.: Mangan als Katalysator der Pflanzenatmung. Planta (Berl.) 29, 419 (1939).CrossRefGoogle Scholar
  412. Lundegårdh, H.: Anionenatmung und Bluten. Planta (Berl.) 31, 184 (1940a).CrossRefGoogle Scholar
  413. Lundegårdh, H.: Investigations as to the absorption and accumulation of inorganic ions. Ann. Agricult. Coll. Sweden 8, 233 (1940b).Google Scholar
  414. Lundegårdh, H.: Untersuchungen über das chemisch-physikalische Verhalten der Oberfläche lebender Zellen. Protoplasma 35, 548 (1941).CrossRefGoogle Scholar
  415. Lundegårdh, H.: Bleeding and sap movement. Ark. Bot. (Stockh.) A 31, No 2 (1943).Google Scholar
  416. Lundegårdh, H.: Absorption, transport and exudation of inorganic ions by the roots. Ark. Bot. (Stockh.) A 32, No 12 (1945).Google Scholar
  417. Lundegårdh, H.: Transport of water and salts through plant tissues. Nature (Lond.) 157, 575 (1946).CrossRefGoogle Scholar
  418. Lundegårdh, H.: Mineral nutrition of plants. Annual Rev. Biochem. 1947, 503.Google Scholar
  419. Lundegårdh, H.: On the mechanism of active movement of water and solutes through plant roots. Disc. Faraday Soc. 1948, No 3, 139.Google Scholar
  420. Lundegårdh, H.: Growth, bleeding and salt absorption of wheat roots as influenced by substances which interfere with glycolysis and aerobic respiration. Ann. Agricult. Coll. Sweden 16, 339 (1949a).Google Scholar
  421. Lundegårdh, H.: Quantitative relations between respiration and salt absorption. Ann. Agricult. Coll. Sweden 16, 372–403 (1949b).Google Scholar
  422. Lundegårdh, H.: The time course of the ion absorption of wheat roots and the influence of the concentration. Physiol. Plantarum (Copenh.) 2, 388–401 (1949c).CrossRefGoogle Scholar
  423. Lundegårdh, H.: The influence of auxin anions on the growth of wheat roots. Ark. Bot. (Stockh.) 1, 289 (1949d).Google Scholar
  424. Lundegårdh, H.: The effect of indol acetic acid on the bleeding of wheat roots. Ark. Bot. (Stockh.) 1, 295 (1949e).Google Scholar
  425. Lundegårdh, H.: The translocation of salts and water through wheat roots. Physiol. Plantarum (Copenh.) 3, 103 (1950a).CrossRefGoogle Scholar
  426. Lundegårdh, H.: Reversal of respiration and salt absorption by cyanide and azide. Nature (Lond.) 165, 513 (1950b).CrossRefGoogle Scholar
  427. Lundegårdh,H.: Lärobok i Växtfysiologi med Växtanatomi. [Swedish]. Stockholm 1950c.Google Scholar
  428. Lundegårdh, H.: Spectroscopic evidence of the participation of the cytochrome-cytochromeoxidase system in the active transport of salts. Ark. Kemi (Stockh.) 3, 69 (1951a).Google Scholar
  429. Lundegårdh, H.: The cytochrome-cytochromeoxidase system of living roots of wheat and corn. Ark. Kemi (Stockh.) 3, 469 (1951b).Google Scholar
  430. Lundegårdh, H.: Properties of the cytochrome system of living wheat roots. Nature (Lond.) 169, 1088 (1952a).CrossRefGoogle Scholar
  431. Lundegårdh, H.: Properties of the cytochrome system of wheat roots. Ark. Kemi (Stockh.) 5, 97 (1952b).Google Scholar
  432. Lundegårdh, H.: Controlling effect of salts on the activity of the cytochrome oxidase. Nature (Lond.) 171, 477 (1953a).CrossRefGoogle Scholar
  433. Lundegårdh, H.: Reaction kinetics of the cytochrome system. Nature (Lond.) 171, 521 (1953b).CrossRefGoogle Scholar
  434. Lundegårdh, H.: Enzyme systems conducting the aerobic respiration of roots of wheat and rye. Ark. Kemi (Stockh.) 7, 451 (1954a).Google Scholar
  435. Lundegårdh, H.: Anion respiration. The experimental basis of a theory of absorption, transport and exudation of electrolytes by living cells and tissues. Symposia Soc. Exper. Biol. 8, 262 (1954b).Google Scholar
  436. Lundegårdh, H.: A new cytochrome in living roots. Nature (Lond.) 173, 939 (1954c).CrossRefGoogle Scholar
  437. Lundegårdh, H.: On the oxidation of cytochrome f by light. Physiol. Plantarum (Copenh.) 7, 375–382 (1954d).CrossRefGoogle Scholar
  438. Lundegårdh, H.: Spectrophotometrical determination of peroxidase in living roots. Physiol. Plantarum (Copenh.) 8, 84 (1955a).CrossRefGoogle Scholar
  439. Lundegårdh, H.: On partial oxidation of the cytochrome system in the presence of cyanide. Physiol. Plantarum (Copenh.) 8, 95 (1955b).CrossRefGoogle Scholar
  440. Lundegårdh, H.: On the cytochromes b and dh in the roots of cereals. Physiol. Plantarum (Copenh.) 8, 142 (1955c).CrossRefGoogle Scholar
  441. Lundegårdh, H.: Mechanisms of absorption, transport, accumulation, and secretion of ions. Annual Rev. Plant Physiol. 6, 1 (1955d).CrossRefGoogle Scholar
  442. Lundegårdh, H.: Spectrophotometric investigations on enzyme systems in living objects. I. The oxidation-reduction systems of baker’s yeast. Biochim. et Biophysica Acta 20, 469–487 (1956a).CrossRefGoogle Scholar
  443. Lundegårdh, H.: New spectrophotometrical methods for investigation of the respiratorical enzymes of yeast. Acta chem. scand. (Copenh.) 10, 1083–1096 (1956b).CrossRefGoogle Scholar
  444. Lundegårdh, H.: Spectrophotometric investigations on enzyme systems in living objects. II. The cytochromes a and a3. Biochim. et Biophysica Acta 25, 1–12 (1957).CrossRefGoogle Scholar
  445. Lundegårdh, H.: Investigations on the mechanism of absorption and accumulation of salts. Physiol. Plantarum (Copenh.) 11, 332–346, 564–571, 585–598 (1958).CrossRefGoogle Scholar
  446. Lundegårdh, H., u. H. Burström: Untersuchungen über die Salzaufnahme der Pflanzen. III. Quantitative Beziehungen zwischen Atmung und Anionenaufnahme. Biochem. Z. 261, 235 (1933b).Google Scholar
  447. Lundegårdh, H., u. H. Burström: Atmung und Ionenaufnahme. Planta (Berl.) 18, 683–699 (1933a).CrossRefGoogle Scholar
  448. Lundegårdh, H., u. H. Burström: Untersuchungen über die Atmungsvorgänge in Pflanzenwurzeln. Biochem. Z. 277, 223 (1935).Google Scholar
  449. Lundegårdh, H., u. H. Burström: On the sugar consumption and respiration of wheat roots at different pH values. Ann. Agricult. Coll. Sweden 12, 51 (1944).Google Scholar
  450. Lundegårdh, H., H. Burström and E. Rennerfelt: Untersuchungen über die Salzaufnahme der Pflanzen. II. Die Aufnahme von Alkaliund Erdalkalichloriden. Sv. bot. Tidskr. 26, 271 (1932).Google Scholar
  451. Lundegardh, H., and G. Stenlid: On the exudation of nucleotides and flavanone from living roots. Ark. Bot. (Stockh.) A 31, No 10 (1944).Google Scholar
  452. Middleton, L. J.: Salt respiration in storage tissue. New Phytologist 55, 117–119 (1956).CrossRefGoogle Scholar
  453. Millerd, A., J. Bonner, B. Axelrod and R. Bandurski: Oxidative and phos-phorylatic activity of plant mitochondria. Proc. Nat. Acad. Sci. U.S.A. 37, 855 (1951).CrossRefGoogle Scholar
  454. Milthorpe, J., and R. N. Robertson: Salt respiration and accumulation in barley roots. Austral. J. Exper. Biol. a. Med. Sci. 26, 189 (1948).CrossRefGoogle Scholar
  455. Nielsen, T. R., and R. Overstreet: A study of the role of the hydrogen ion in the mechanism of potassium absorption by excised barley roots. Plant Physiol. 30, 303–309 (1955).PubMedCrossRefGoogle Scholar
  456. Osterhout, W. J. V.: The mechanism of accumulation in living cells. J. Gen. Physiol. 35, 579 (1952).PubMedCrossRefGoogle Scholar
  457. Overstreet, R., and L. Jacobson: Mechanisms of ion absorption by roots. Annual. Rev. Plant Physiol. 3, 189 (1952).CrossRefGoogle Scholar
  458. Palade, E. G.: The fine structure of mitochondria. Anat. Rec. 114, 427–452 (1952).PubMedCrossRefGoogle Scholar
  459. Perner, E.S., u. G. Pfefferkorn: Pflanzliche Chondriosomen im Licht- und Elektronenmikroskop. Flora (Jena) 140, 98 (1953).Google Scholar
  460. Petritschek, K.: Über die Beziehungen zwischen Geschwindigkeit und Elektrolyt des aufsteigenden Saftstromes. Flora (Jena) 140, 345–385 (1953).Google Scholar
  461. Robertson, R. N.: Studies in the metabolism of plant cells. I. Accumulation of chlorides by plant cells and its relation to respiration. Austral. J. Exper. Biol. a. Med. Sci. 19, 365 (1941).Google Scholar
  462. Robertson, R. N.: Studies in the metabolism of plant cells. II. Effects of temperature on accumulation of potassium chloride and on respiration. Austral. J. Exper. Biol. a. Med. Sci. 22, 237–256 (1944).CrossRefGoogle Scholar
  463. Robertson, R. N.: The last haunts of demons: A comparative study of secretion and accumulation. Proc. Linnean Soc. N. S. Wales 75, 4 (1951a).Google Scholar
  464. Robertson, R. N.: Mechanism of absorption and transport of inorganic nutrients in plants. Annual. Rev. Plant Physiol. 2, 1 (1951b).CrossRefGoogle Scholar
  465. Robertson, R. N.: Electrolytes in plant tissues. Endeavour 16, 193–198 (1957).Google Scholar
  466. Robertson, R. N., and M. Thorn: Studies in the metabolism of plant cells. IV. The reversibility of the salt respiration. Austral. J. Exper. Biol. a. Med. Sci. 23, 305 (1945b).CrossRefGoogle Scholar
  467. Robertson, R. N., and J. S. Turner: Studies in the metabolism of plant cells. III. The effects of cyanide on the accumulation of potassium chloride and on respiration; the nature of the salt respiration. Austral. J. Exper. Biol. a. Med. Sci. 23, 63 (1945a).CrossRefGoogle Scholar
  468. Robertson, R. N., J. S. Turner and M. J. Wilkins: Studies in the metabolism of plant cells. V. Salt respiration and accumulation in red beet tissue. Austral. J. Exper. Biol. a. Med. Sci. 25, 1 (1947).CrossRefGoogle Scholar
  469. Robertson, R. N., and M. J. Wilkins: Studies in the metabolism of plant cells. VII. The quantitative relation between salt accumulation and salt respiration. Austral. J. Sci. Res. 1, 17 (1948).Google Scholar
  470. Robertson, R. N., M. J. Wilkins, A. B. Hope and L. Nesztel: Studies in the metabolism of plant cells. X. Respiratory activity and ionic relations of plant mitochondria. Austral. J. Biol. Sci. 8, 164 (1955).Google Scholar
  471. Robertson, R. N., M. J. Wilkins and D. C. Weeks: Studies in the metabolism of plant cells. IX. The effects of 2,4-dinitrophenol on salt accumulation and salt respiration. Austral. J. Sci. Res. 4, 248 (1951).Google Scholar
  472. Rothstein, A., and R. Meier: The relationship of cell surface to metabolism. I. Phosphatases in the cell surface of living yeast cells. J. Cellul. a. Comp. Physiol. 32, 77 (1948).CrossRefGoogle Scholar
  473. Stafford, H. A.: Intracellular localization of enzymes in pea seedlings. Physiol. Plantarum (Copenh.) 4, 696 (1951).CrossRefGoogle Scholar
  474. Stenlid, G.: The effect of sodium azide on the exudation and oxygen consumption of excised plant roots. Physiol. Plantarum (Copenh.) 1, 185–195 (1948).CrossRefGoogle Scholar
  475. Stenlid, G.: The effect of 2,4-dinitrophenol upon oxygen consumption and glucose uptake in young wheat roots. Physiol. Plantarum (Copenh.) 2, 350–371 (1949).CrossRefGoogle Scholar
  476. Steward, F. C.: Observations upon the effects of time, oxygen and salt concentration upon absorption and respiration by storage tissue. Protoplasma 18, 208–242 (1933).CrossRefGoogle Scholar
  477. Stenlid, G.: Mineral nutrition of plants. Annual Rev. Biochem. 4, 519 (1935).CrossRefGoogle Scholar
  478. Steward, F. C., and F. K. Millar: Salt accumulation in plants: A consideration of the role of growth and metabolism. Symposia Soc. Exper. Biol. 8, 367–406 (1945).Google Scholar
  479. Steward, F. C., and C. Preston: The effect of salt concentration upon the metabolism of potato discs and the contrasted effect of potassium and calcium salts which have a common ion. Plant Physiol. 16, 85–116 (1941).PubMedCrossRefGoogle Scholar
  480. Sutcliffe, J. F.: Ion secretion in plants. Internat. Rev. Cytol. 2, 179–200 (1953).CrossRefGoogle Scholar
  481. Sutcliffe, J. F., and D. P. Hackett: Efficiency of ion transport in biological systems. Nature (Lond.) 180, 95 (1957).CrossRefGoogle Scholar
  482. Sutter, E.: Über die Wirkung des Kohlenoxyds auf Atmung und Ionenaufnahme von Weizenwurzeln. Experientia (Basel) 6, 264 (1950).CrossRefGoogle Scholar
  483. Takada, H.: Ion accumulation and osmotic value of plants, with special reference to strand plants. J. Inst. Polytechn., Osaka City Univ. 5, 81 (1954).Google Scholar
  484. Turner, J. S.: The metabolism of the apple during storage. Austral. J. Sci. Res. B 2, 138–153 (1949).Google Scholar
  485. Turner, J. S., and V. F. Hanly: Succinate and plant respiration. New Phytologist 48, 149 (1949).CrossRefGoogle Scholar
  486. Ulrich, A.: Metabolism of organic acids in excised barley roots as influenced by temperature, oxygen tension, and salt concentration. Amer. J. Bot. 29, 220–227 (1942).CrossRefGoogle Scholar
  487. Ussing, H. H.: Transport through biological membranes. Annual. Rev. Physiol. 15, 1 (1953).PubMedCrossRefGoogle Scholar
  488. Vervelde, G. J.: Salt accumulation by plant roots [Holland.]. Thesis, Wageningen 1952.Google Scholar
  489. Walker, N. A.: Microelectrode experiments on Nitella. Austral. J. Biol. Sci. 8, 476 (1955).Google Scholar
  490. Wanner, H.: Untersuchungen über die Temperaturabhängigkeit der Salzaufnahme durch Pflanzenwurzeln. I. Die relative Größe der Temperaturkoeffizienten (Q10) von Kationen- und Anionenaufnahme. Ber. Schweiz. Bot. Ges. 58, 123 (1948).Google Scholar
  491. Weeks, D. C., and R. N. Robertson: Studies in the metabolism of plant cells. VIII. Dependance of salt accumulation and salt respiration upon the cytochrome system. Austral. J. Sci. Res. B 3, 487 (1950).Google Scholar
  492. Weevers, T.: Aufnahme, Verarbeitung und Transport der Zucker im Blattgewebe. Rec. Trav. bot. néerl. 28, 400–420 (1931).Google Scholar
  493. Wiebe, H. H., and P. J. Kramer: Translocation of radioactive isotopes from various regions of roots of barley seedlings. Plant Physiol. 29, 342 (1954).PubMedCrossRefGoogle Scholar
  494. Appleman, C. O., and C. L. Smith: Effect of previous cold storage on the respiration of vegetables at higher temperatures. J. Agricult. Res. 53, 557–580 (1936).Google Scholar
  495. Arreguin-Lozano, B., and J. Bonner: Experiments on sucrose formation by potato tubers as influenced by temperature. Plant Physiol. 24, 720–738 (1949).PubMedCrossRefGoogle Scholar
  496. Barker, J.: Analytic studies in plant respiration. I.. The relation of the respiration of potatoes to the concentration of sugars and to the accumulation of a depressant at low temperatures. Part I. The effect of temperature-history on the respiration/sugar relation. Proc. Roy. Soc. Lond., Ser. B 112, 316–335 (1933a).CrossRefGoogle Scholar
  497. Barker, J.: Analytic studies in plant respiration. V. The relation of the respiration of potatoes to the concentration of sugars and to the accumulation of a depressant at low temperatures. Part II. The form of the normal respiration/ sugar relation and the mechanism of depression. Proc. Roy. Soc. Lond., Ser. B 112, 336–358 (1933b).CrossRefGoogle Scholar
  498. Barker, J.: Analytic studies in plant respiration. VI. The relation of the respiration of potatoes to the concentration of sugars and to the accumulation of a depressant at low temperatures. Part III. The relation of the respiration to the concentration of sucrose. Proc. Roy. Soc. Lond., Ser. B 119, 453–473 (1936).CrossRefGoogle Scholar
  499. Becquerel, P.: La suspension de la vie des algae, lichens, mousses aux confins du zéro absolu, et rôle de la synérèse réversible pour leur survie au dégel expliquant l’existence de la flore polaire et des hautes altitudes. C. r. Acad. Sci. Paris 232, 22–25 (1951).Google Scholar
  500. Belehradek, J.: Sur la significance des coefficients de temperature. Protoplasma (Berl.) 7, 232–255 (1929).CrossRefGoogle Scholar
  501. Belehradek, J., and M. Belehradkova: Influence of age on the temperature coefficient of the respiration rate in leaves of Scolopendrium scolopendrium Karst. New Phytologist 28, 313–318 (1929).CrossRefGoogle Scholar
  502. Bennett, J. P., and E. T. Bartholomew: The respiration of potato tubers in relation to the occurrence of blackheart. Univ. Calif. Publ. Agricult. Sci. (Coll. of Agricult. Techn. Paper) 14 (1924), 41 pp.Google Scholar
  503. Bennet-Clark, T. A.: The respiratory quotients of succulent plants. Sci. Proc. Roy. Dublin Soc. 20, 293–299 (1932).Google Scholar
  504. Berry, L. J.: The influence of oxygen tension on the respiratory rate in different segments of onion roots. J. Cellul. a. Comp. Physiol. 33, 41–66 (1949).CrossRefGoogle Scholar
  505. Berry, L. J., and W. E. Norris jr.: Studies of onion root respiration. I. Velocity of oxygen consumption in different segments of root at different temperatures. Biochim. et Biophysica Acta 3, 593–606 (1949).CrossRefGoogle Scholar
  506. Biale, J. B.: Effect of oxygen concentration on respiration of the Fuerte avocado fruit. Amer. J. Bot. 33, 363–373 (1946).CrossRefGoogle Scholar
  507. Biale, J. B., R. E. Young and A. J. Olmstead: Fruit respiration and ethylene production. Plant Physiol. 29, 168–174 (1954).PubMedCrossRefGoogle Scholar
  508. Blackman, F.F.: Optima and limiting factors. Ann. of Bot. 19, 281–295 (1905).Google Scholar
  509. Blackman, F.F., and P. Parija: Analytic studies in plant respiration. I. The respiration of a population of ripening apples. Proc. Roy. Soc. Lond., Ser. B 108, 412–445 (1928).CrossRefGoogle Scholar
  510. Blanc, M. L.: Recherches expérimentales sur l’influence des variations de température sur la respiration des plantes. Rev. gén. Bot. 28, 65–79 (1916).Google Scholar
  511. Bonner, W., and J. Bonner: The role of carbon dioxide in acid formation by succulent plants. Amer. J. Bot. 35, 113–117 (1948).CrossRefGoogle Scholar
  512. Bonnier, G., et L. Mangin: (1) Recherches sur la respiration et la transpiration des champignons. Ann. Sci. natur., Bot., VI. sér. 17, 210–305 (1884).Google Scholar
  513. Bonnier, G., et L. Mangin: (2) Recherches sur la respiration des tissus sans chlorophylle. Ann. Sci. natur., Bot., VI. sér. 18, 293–382 (1884).Google Scholar
  514. Borriss, H., u. S. Schmidt: Keimung, Atmung und Endoxydasenaktivität der Brutknöllchen von Ranunculus ficaria L. in Abhängigkeit von Temperatur und Nachreifezustand. Flora (Jena) 145, 313–325 (1957).Google Scholar
  515. Bottelier, H. P.: Über den Einfluß äußerer Faktoren auf die Protoplasmaströmung in der Avena-Koleoptile. Rec. Trav. bot. néerl. 31, 474–582 (1934).Google Scholar
  516. Bottelier, H. P.: On factors affecting the respiration of the Avena coleoptile. Rec. Trav. bot. néerl. 36, 658–671 (1939).Google Scholar
  517. Brierley, W. G., and R. H. Landon: A study of the winter respiration of the strawberry plant. Proc. Amer. Soc. Horticult. Sci. 35, 480–482 (1937).Google Scholar
  518. Brown, J. W.: Respiration of acorns as related to temperature and after-ripening. Plant Physiol. 14, 621–645 (1939).PubMedCrossRefGoogle Scholar
  519. Buchanan, R. E., and E. I. Fulmer: Physiology and Biochemistry of bacteria, vol.11. Baltimore: Williams & Wilkins 1930.Google Scholar
  520. Bünning, E.: Entwicklungs- und Bewegungsphysiologie der Pflanze. 3. Aufl. Berlin: Springer 1953.CrossRefGoogle Scholar
  521. Burton, W. G.: Studies on the dormancy and sprouting of potatoes. I. The oxygen content of the potato tuber. New Phytologist 49, 121–134 (1950).CrossRefGoogle Scholar
  522. Burton, W. G.: Studies on the dormancy and sprouting of potatoes. II. The carbon dioxide content of the potato tuber. New Phytologist 50, 287–296 (1951).CrossRefGoogle Scholar
  523. Carrick, D. B.: The respiration of apples at low non-freezing temperatures and while frozen. Proc. Amer. Soc. Horticult. Sci. 23, 277–285 (1926).Google Scholar
  524. Chudiakov, N.: Beiträge zur Kenntnis der intramolekularen Athmung. Landwirtsch. Jb. 23, 333–389 (1894).Google Scholar
  525. Clausen, H.: Beiträge zur Kenntnis der Athmung der Gewächse und des pflanzlichen Stoffwechsels. Landwirtsch. Jb. 19, 893–930 (1890).Google Scholar
  526. Crozier, W. J.: On biological oxidations as functions of temperature. J. Gen. Physiol. 7, 189–216 (1924).PubMedCrossRefGoogle Scholar
  527. Crozier, W. J., and A. E. Navez: Temperature characteristic for production of CO2 by Phaseolus seedlings. J. Gen. Physiol. 14, 617–629 (1931).PubMedCrossRefGoogle Scholar
  528. Czapek, F.: Biochemie der Pflanzen, 2. Aufl., Bd. III. Jena: Gustav Fischer 1921.Google Scholar
  529. Denny, F. E.: Gas content of plant tissue and respiration measurements. Contrib. Boyce Thompson Inst. 14, 257–276 (1946).Google Scholar
  530. Detmer, W.: Beobachtungen über die normale Athmung der Pflanzen. Ber. dtsch. bot. Ges. 10, 535–539 (1892).Google Scholar
  531. Eaks, I. L., and L. L. Morris: Respiration of cucumber fruits associated with physiological injury at chilling temperatures. Plant Physiol. 31, 308–314 (1956).PubMedCrossRefGoogle Scholar
  532. Eaves, C.A.: Preliminary study of the effect of a series of temperature changes upon respiratory activity of apples during the postclimacteric in senescent decline. Sci. Agricult. 16, 28–39 (1935).Google Scholar
  533. Ehrke, G.: Über die Wirkung der Temperatur und des Lichtes auf die Atmung und Assimilation einiger Meeres- und Süßwasseralgen. Planta (Berl.) 13, 221–310 (1931).CrossRefGoogle Scholar
  534. Fauconpret, F. de: Recherches sur la respiration des végétaux. C. r. Acad. Sci. Paris 58, 334–336 (1864).Google Scholar
  535. Fernandes, D. S.: Aerobe und anaerobe Atmung bei Keimlingen von Pisum sativum. Rec. Trav. bot. néerl. 20, 107–256 (1923).Google Scholar
  536. Gain, E.: Température ultra-maxima supportée par les embryons d’Helianthus annuus L. C. r. Acad. Sci. Paris 174, 1031–1033 (1922).Google Scholar
  537. Gane, R.: A study of the respiration of bananas. New Phytologist 35, 383–402 (1936).CrossRefGoogle Scholar
  538. Gerhart, A. R.: Respiration in strawberry fruits. Bot. Gaz. 89, 40–66 (1930).CrossRefGoogle Scholar
  539. Goddard, D. R.: The reversible heat activation inducing germination and increased respiration in the ascospores of Neurospora tetrasperma. J. Gen. Physiol. 19, 45–60 (1935).PubMedCrossRefGoogle Scholar
  540. Goddard, D. R.: The reversible heat activation of respiration in Neurospora. Cold Spring Harbor Symp. Quant. Biol. 7, 362–376 (1939).CrossRefGoogle Scholar
  541. Gore, H. C.: Studies on fruit respiration. I. The effect of temperature on the respiration of fruits. Bull. U.S. Dep. Agricult. Bur. Chem. 142, 1–28 (1911).Google Scholar
  542. Gustafson, F. G.: The respiratory quotient and its indication of what chemical activities take place in tomato fruits. Pap. Mich. Acad. Sci. 21, 59–74 (1936).Google Scholar
  543. Haller, M. H., and P. L. Harding: Effect of storage temperatures on peaches. Techn. Bull. U.S. Dep. Agricult. 680, 1–32 (1939).Google Scholar
  544. Halvorsen, H.: The gas exchange of flax seeds in relation to temperature. I. Experiments with immature seeds and capsules. Physiol. Plantarum (Copenh.) 8, 501–511 (1955).CrossRefGoogle Scholar
  545. Halvorsen, H.: The gas exchange of flax seeds in relation to temperature. II. Experiments with germinating seeds. Physiol. Plantarum (Copenh.) 9, 412–420 (1956).CrossRefGoogle Scholar
  546. Harding, P. L.: Respiration studies of Grimes apples under various controlled temperatures. Proc. Amer. Soc. Horticult. Sci. 26, 319–324 (1930).Google Scholar
  547. Harrington, G. T.: Respiration of apple seeds. J. Agricult. Res. 23, 117–130 (1923).Google Scholar
  548. Hasselbring, H., and L. A. Hawkins: Respiration experiments with sweet potatoes. J. Agricult. Res. 5, 509–517 (1915).Google Scholar
  549. Heilbrunn, L.V.: An outline of general physiology. Philadelphia: W. B. Saunders Company 1943.Google Scholar
  550. Hopkins, E. F.: Relation of low temperatures to respiration and carbohydrate changes in potato tubers. Bot. Gez. 78, 311–325 (1924).CrossRefGoogle Scholar
  551. James, W. O.: Plant respiration. Oxford: Clarendon Press 1953.Google Scholar
  552. Jumelle, H.: Sur le dégagement d’oxygène par les plantes, aux basses températures. C. r. Acad. Sci. Paris 112, 1462–1465 (1891).Google Scholar
  553. Kidd, F., and C. West: Physiology of fruit. I. Changes in the respiratory activity of apples during their senescence at different temperatures. Proc. Roy. Soc. Lond., Ser. B 106, 93–109 (1930).CrossRefGoogle Scholar
  554. Kidd, F., and C. West: The cold-storage and gas-storage of English-grown William’s Bon Chrétian pears. Rep. Food Invest. Bd. for 1936, p. 113–126. (1937).Google Scholar
  555. Koffler, H., F. H. Johnson and P.W. Wilson: Combined influence of temperature and urethan on the respiration of Rhizobium. J. Amer. Chem. Soc. 69, 1113–1117 (1947).CrossRefGoogle Scholar
  556. Kubowitz, F.: Stoffwechsel der Froschnetzhaut bei verschiedenen Temperaturen und Bemerkungen über den Meyerhofquotient bei verschiedenen Temperaturen. Biochem. Z. 204, 475–478 (1929).Google Scholar
  557. Kuijper, J.: Über den Einfluß der Temperatur auf die Atmung der höheren Pflanzen. Rec. Trav. bot. néerl. 7, 130–240 (1910).Google Scholar
  558. Kurbatov, M. I., u. N. D. Leonov: Über den Einfluß der Temperatur auf die Atmung von Phaseolus aureus. Planta (Berl.) 12, 147–166 (1931).CrossRefGoogle Scholar
  559. Leonard, E. R.: Studies in tropical fruits. VI. A preliminary consideration of the solubility of gases in relation to respiration. Ann. of Bot., N. S. 3, 825–843 (1939).Google Scholar
  560. Lineweaver, H., D. Burk and K. Horner: The temperature characteristic of respiration of Azotobacter. J. Gen. Physiol. 15, 497–505 (1932).PubMedCrossRefGoogle Scholar
  561. Long, W. A. de, J. H. Beaumont and J. J. Willaman: Respiration of apple twigs in relation to winter hardiness. Plant Physiol. 5, 509–534 (1930).PubMedCrossRefGoogle Scholar
  562. Lundegårdh, H.: Der Temperaturfaktor bei Kohlensäureassimilation und Atmung. Biochem. Z. 154, 195–234 (1924).Google Scholar
  563. Lutz, J. M.: Factors influencing the quality of American grapes in storage. Techn. Bull. U.S. Dep. Agricult. 606, 1–26 (1938).Google Scholar
  564. Luyet, B. J., and G. Thoennes: The survival of plant cells immersed in liquid air. Science (Lancaster, Pa.) 88, 284–285 (1938).Google Scholar
  565. Mack, W. B.: The relation of temperature and the partial pressure of oxygen to respiration and growth in germinating wheat. Plant Physiol. 5, 1–68 (1930).PubMedGoogle Scholar
  566. Magness, J. R.: Composition of gases in intercellular spaces of apples and potatoes. Bot. Gaz. 70, 308–316 (1920).CrossRefGoogle Scholar
  567. Michaels, W. H.: Respiration of the shoot as affected by temperature changes of the root. Bot. Gaz. 91, 167–182 (1931).CrossRefGoogle Scholar
  568. Müller, D.: Die Kohlensäureassimilation bei arktischen Pflanzen und die Abhängigkeit der Assimilation von der Temperatur. Planta (Berl.) 6, 22–39 (1928).CrossRefGoogle Scholar
  569. Müller-Thurgau, H.: Über Zuckeranhäufung in Pflanzentheilen in Folge niederer Temperatur. Landwirtsch. Jb. 11, 751–828 (1882).Google Scholar
  570. Müller-Thurgau, H.: Beitrag zur Erklärung der Ruheperioden der Pflanzen. Landwirtsch. Jb. 14, 851–907 (1885).Google Scholar
  571. Müller-Thurgau, H., u. O. Schneider-Orelli: Beiträge zur Kenntnis der Lebensvorgänge in ruhenden Pflanzentheilen. I. Über den Einfluß des Vorerwärmens und einiger anderer Faktoren. Flora (Jena) 101, 309–372 (1910).Google Scholar
  572. Navez, A. E.: Respiration and geotropism in Vicia jaba. J. Gen. Physiol. 12, 641–667 (1929).PubMedCrossRefGoogle Scholar
  573. Newton, R., and J.A. Anderson: Respiration of winter wheat plants at low temperatures. Canad. J. Res. 5, 337–354 (1937).CrossRefGoogle Scholar
  574. Nielsen, N., and D. Dresden: Untersuchungen über die Temperaturabhängigkeit der Respiration bei Aspergillus niger. C. r. Trav. Labor. Carlsberg, Sér. Physiol. 22, 287–300 (1938).Google Scholar
  575. Northen, H. T., and R. T. Northen: Time and temperature of protoplasmic coagulation. Plant Physiol. 14, 175–176 (1939).PubMedCrossRefGoogle Scholar
  576. Oellet, C.: The path of carbon in photosynthesis. XII. Some temperature effects. J. of Exper. Bot. 2, 316–320 (1951).CrossRefGoogle Scholar
  577. Oota, Y., R. Fujii and Y. Sunobe: Studies on the connection between sucrose formation and respiration in germinating bean cotyledons. Physiol. Plantarum (Copenh.) 9, 38–50 (1956).Google Scholar
  578. Palladine, M. W.: Influence des changements de température. Rev. gén. Bot. 11, 241–257 (1899).Google Scholar
  579. Pfeffer, W.: The physiology of plants. Translated by A. J. Ewart. Oxford: Clarendon Press 1900.Google Scholar
  580. Platenius, H.: Effect of temperature on the respiration rate and the respiratory quotient of some vegetables. Plant Physiol. 17, 179–197 (1942).PubMedCrossRefGoogle Scholar
  581. Pollock, B. M.: The respiration of Acer buds in relation to the inception and termination of the winter rest. Physiol. Plantarum (Copenh.) 6, 47–64 (1953).CrossRefGoogle Scholar
  582. Pourievitch, M. K.: Influence de la température sur la respiration des plantes. Ann. Sci. natur., Bot., IX. ser. 1, 1–32 (1905).Google Scholar
  583. Pratt, H. K., and J. B. Biale: Relation of the production of an active emanation and respiration of the avocado fruit. Plant Physiol. 19, 519–528 (1944).PubMedCrossRefGoogle Scholar
  584. Pringsheim, E. G.: Untersuchungen über Samenquellung. III. Mitt. Der Atmungsquotient quellender Samen. Planta (Berl.) 19, 653–712 (1933).CrossRefGoogle Scholar
  585. Rosenfels, R. S.: The absorption and accumulation of potassium bromide by Elodea as related to respiration. Protoplasma 23, 503–519 (1935).CrossRefGoogle Scholar
  586. Rosenstock, G.: Die Zeitwirkung von Temperaturänderungen auf die CO2-Abgabe von Kartoffelparenchym. Planta (Berl.) 45, 208–212 (1955).CrossRefGoogle Scholar
  587. Scheffer, T. C.: Relation of temperature and time to carbon dioxide production and growth in continuously aerated malt-agar cultures of Polystictus versicolor. Plant Physiol. 11, 535–564 (1936).PubMedCrossRefGoogle Scholar
  588. Scheffer, T. C., and B. E. Livingston: Relation of oxygen pressure and temperature to growth and carbon dioxide production in the fungus Polystictus versicolor. Amer. J. Bot. 24, 109–119 (1937).CrossRefGoogle Scholar
  589. Scholander, P. F., W. Flagg, R. J. Hock and L. Irving: Studies on the physiology of frozen plants and animals in the acrtic. J. Cellul. a. Comp. Physiol. 42, Suppl. 1, 1–56 (1953).CrossRefGoogle Scholar
  590. Scholander, P. F., W. Flagg, V. Walters and L. Irving: Respiration in some arctic and tropical lichens in relation to temperature. Amer. J. Bot. 39, 707–713 (1952).CrossRefGoogle Scholar
  591. Schütt, B.: Die Beziehungen zwischen Atmung und Temperatur bei der Renntierflechte. Abh. naturwiss. Ver. Bremen 28, 267–270 (1933).Google Scholar
  592. Sizer, I. W.: Effects of temperature on enzyme kinetics. Adv. Enzymol. 3, 35–62 (1943).Google Scholar
  593. Slator, A.: The rate of alcoholic fermentation. J. Inst. Brewing 17, 147–169 (1911).CrossRefGoogle Scholar
  594. Spoehr, H.A., and M. W. Milner: Starch dissolution and amylolytic activity in leaves. Proc. Amer. Philos. Soc. 81, 37–78 (1939).Google Scholar
  595. Stålfelt, M. G.: Der Gasaustausch der Flechten. Planta (Berl.) 29, 11–31 (1938).CrossRefGoogle Scholar
  596. Stier, T. J. B.: The rate of oxygen utilization by yeast as related to temperature. J. Gen. Physiol. 16, 815–840 (1933).PubMedCrossRefGoogle Scholar
  597. Stiles, W., and W. Leach: Respiration in plants, 3. edit. London: Methuen & Co. 1952.Google Scholar
  598. Stocker, O.: Physiologische und ökologische Untersuchungen an Laub- und Strauchflechten. Flora (Jena) 121, 334–415 (1927).Google Scholar
  599. Stocker, O.: Assimilation und Atmung Westjavanischer Tropenbäume. Planta (Berl.) 24, 402–445 (1935).CrossRefGoogle Scholar
  600. Tang, Pei-Sung: Temperature characteristics for the oxygen consumption of germinating seeds of Lupinus albus and Zea Mays. J. Gen. Physiol. 14, 631–641 (1931a).PubMedCrossRefGoogle Scholar
  601. Tang, Pei-Sung: Temperature characteristics for the production of CO2- by germinating seeds of Lupinus albus and Zea Mays. J. Gen. Physiol. 15, 87–95 (1931b).PubMedCrossRefGoogle Scholar
  602. Thomas, M.: Plant physiology, 2. edit. London: J. & A. Churchill 1940.Google Scholar
  603. Thomas, M.: Physiological studies on acid metabolism in green plants. I. CO2- fixation and CO2- liberation in crassulacean acid metabolism. New Phytologist 48, 390–420 (1949).CrossRefGoogle Scholar
  604. Thomas, M.: Carbon dioxide fixation and acid synthesis in crassulacean acid metabolism. Symposia Soc. Exper. Biol. 5, 72–93 (1951).Google Scholar
  605. Van der Paauw, F.: Der Einfluß der Temperatur auf Atmung und Kohlensäureassimilation einiger Grünalgen. Planta (Berl.) 22, 396–403 (1934).CrossRefGoogle Scholar
  606. Wager, H. G.: On the respiration and carbon assimilation rates of some arctic plants as related to temperature. New Phytologist 40, 1–19 (1941).CrossRefGoogle Scholar
  607. Wassinck, E. C.: Begrenzende Bedingungen bei der Atmung von Phycomyces. Rec. Trav. bot. néerl. 31, 583–690 (1934).Google Scholar
  608. Whiteman, T. M.: A preliminary report on the respiration of Souvenir gladiolus corms before and after curing at various temperatures. Proc. Amer. Soc. Horticult. Sci. 34, 612–617 (1936).Google Scholar
  609. Willaman, J. J., and W.R. Brown: Carbon dioxide dissolved in plant sap and its effect on respiration measurements. Plant Physiol. 5, 535–542 (1930).PubMedCrossRefGoogle Scholar
  610. Winkler, A. J., and W. O. Williams: Starch and sugars of Vitis vinifera. Plant Phvsiol. 20, 412–432 (1945).CrossRefGoogle Scholar
  611. Zacharowa, T. M.: Über den Gasstoffwechsel der Nadelholzpflanzen im Winter. Planta (Berl.) 8, 68–83 (1929).CrossRefGoogle Scholar
  612. Zeller, O.: Über Assimilation und Atmung der Pflanzen im Winter. Planta (Berl.) 39, 500–526 (1951).CrossRefGoogle Scholar
  613. Ziegenbein, E.: Untersuchungen über den Stoffwechsel und die Athmung keimender Kartoffelknollen sowie anderer Pflanzen. Jb. wiss. Bot. 25, 563–606 (1893).Google Scholar
  614. Allen, M. B., F. R. Whatley and D. I. Arnon: Photosynthesis by isolated chloroplasts. VI. Rates of conversion of light into chemical energy in photosynthetic phosphorylation. Biochim. biophys. Acta 27, 16–23 (1958).PubMedCrossRefGoogle Scholar
  615. Appleman, D.: Catalase-chlorophyll relationship in barley seedlings. Plant Physiol. 27, 613–621 (1952).PubMedCrossRefGoogle Scholar
  616. Appleman, D., and H. T. Pyfrom: Changes in catalase activity and other responses induced in plants by red and blue light. Plant Physiol. 30, 543–549 (1955).PubMedCrossRefGoogle Scholar
  617. Areboe, F.: Untersuchungen über den direkten und indirekten Einfluß des Lichtes auf die Atmung der Gewächse. Forsch. Gebiet Agrikultur-Physik 16, 429–463 (1893).Google Scholar
  618. Arnon, D. I.: The chloroplast as a complete photosynthetic unit. Science 122, 9–16 (1955).PubMedCrossRefGoogle Scholar
  619. Arnon, D. I., F. R. Whatley and M. B. Allen: Photosynthesis by isolated chloroplasts. IL Photosynthetic phosphorylation, the conversion of light into phosphate bond energy. J. Amer. chem. Soc. 76, 6324–6329 (1954).CrossRefGoogle Scholar
  620. Arnon, D. I., F. R. Whatley and M. B. Allen: Assimila-tory power in photosynthesis. Photosynthetic phosphorylation by isolated chloroplasts is coupled with TPN reduction. Science 127, 1026–1034 (1958).PubMedCrossRefGoogle Scholar
  621. Arnon, D. I., F. R. Whatley and M. B. Allen, Atjdtjs, L. J.: The effects of illumination on the respiration of shoots of the cherry laurel. Ann. Bot. 11, 165–201 (1947).Google Scholar
  622. Bassham, J. A., A. A. Benson, L. D. Kay, A. Z. Harris, A. T. Wilson and M. Calvin: The path of carbon in photosynthesis. XXL The cyclic regeneration of carbon dioxide acceptor. J. Amer. chem. Soc. 76, 1760–1770 (1954).CrossRefGoogle Scholar
  623. Bassham, J. A., K. Shibata and M. Calvin: Quantum requirement in photosynthesis related to respiration. Biochim. biophys. Acta 17, 332–340 (1955).PubMedCrossRefGoogle Scholar
  624. Bassham, J. A., K. Shibata, K. Steenberg, J. Bourdon and M. Calvin: The photosynthetic cycle and respiration: Light-dark transients. J. Amer, chem. Soc. 78, 4120–4124 (1956).CrossRefGoogle Scholar
  625. Becquerel, P.: Sur la respiration des graines à l’état de vie latende. C. R. Acad. Sci. (Paris) 143, 974–977 (1906).Google Scholar
  626. Beevers, H., and M. Gibbs: The direct oxidation pathway in plant respiration. Plant Physiol. 29, 322–324 (1954).PubMedCrossRefGoogle Scholar
  627. Benson, A. A., and M. Calvin: The dark reductions of photosynthesis. Science 105, 648–649 (1947).PubMedCrossRefGoogle Scholar
  628. Benson, A. A., and M. Calvin: The path of carbon in photosynthesis. III. Cold Spr. Harb. Symp. quant. Biol. 13, 6–10 (1948).CrossRefGoogle Scholar
  629. Benson, A. A., and M. Calvin: The path of carbon in photosynthesis. VII. Respiration and photosynthesis. J. exp. Bot. 1, 63–68 (1950).CrossRefGoogle Scholar
  630. Benson, A. A., M. Calvin, V. A. Haas, S. Aronoff, A. G. Hall, J. A. Bassham and J. W. Weigl: C14 in photosynthesis. In: Photosynthesis in plants, edit, by J. Franck and W. E. Looms, pp.381–401. Ames: Iowa State College Press 1949.Google Scholar
  631. Bergson, G., and L. Schotte: The strain in the 1, 2-dithiolane ring. Acta chem. scand. 12, 367–368 (1958).CrossRefGoogle Scholar
  632. Bernard, C.: Leçons sur les phénomènes de la vie, Bd. I, S. 278–279. Paris: Librairie J.-B. Baillière et Fils 1878.Google Scholar
  633. Bidwell, R. G. S., G. Krotkov and G. B. Reed: The influence of light and darkness on the metabolism of radioactive glucose and glutamine in wheat leaves. Canad. J. Bot. 33, 189–196 (1955).CrossRefGoogle Scholar
  634. Biswas, B. B., and S. P. Sen: Thioctic acid and photosynthetic fixation of carbon dioxide. Nature (Lond.) 181, 1219–1220 (1958).CrossRefGoogle Scholar
  635. Blinks, L. R., and R.K. Skow: Time course of photosynthesis as shown by the glass electrode, with anomalies in the acidity changes. Proc. nat. Acad. Sci. (Wash.) 24, 413–419 (1938 a).CrossRefGoogle Scholar
  636. Blinks, L. R., and R.K. Skow: The time course of photosynthesis as shown by a rapid electrode method for oxygen. Proc. nat. Acad. Sci. (Wash.) 24, 420–427 (1938b).CrossRefGoogle Scholar
  637. Blum, H.: Photodynamic action and diseases caused by light. New York: Reinhold Publishing Co. 1941.Google Scholar
  638. Bode, O.: Assimilation, Atmung und Piastidenfarbstoffe in verschiedenfarbigem Licht aufgezogener Fontinalis-Pflsnizen. Jb. wiss. Bot. 89, 208–244 (1941).Google Scholar
  639. Boer, S. R. de: Respiration of Phycomyces. Rec. Trav. bot. néerl. 25, 117–239 (1928).Google Scholar
  640. Bonnier, G., et L. Mangin: Recherches sur la respiration et la transpiration des champignons. Ann. Sci. nat. Bot. (Paris), VI. sér. 17, 210–305 (1884a).Google Scholar
  641. Bonnier, G., et L. Mangin: Recherches sur la respiration des tissus sans chlorophylle. Ann. Sci. nat. Bot. (Paris), VI. sér. 18, 293–391 (1884b).Google Scholar
  642. Bonnier, G., et L. Mangin: Recherches sur l’action chlorophyllienne séparée de la respiration. Ann. Sci. nat. Bot. (Paris), VIL sér. 3, 5–44 (1886).Google Scholar
  643. Borodin, J.: Physiologische Untersuchungen über die Atmung der beblätterten Sprosse. Arb. St. Petersburg. Ges. Naturforsch. 7, 1–114 (1876) [Russisch]. Ref. in Bot. Jber., IL Abt. 4, 919–923 (1878).Google Scholar
  644. Borodin, J.: Untersuchungen über die Pflanzenatmung. Mém. Akad. Imp. Sci. St. Peters-bourg, VIL sér. 28, Nr 4, 1–54 (1881).Google Scholar
  645. Brackett, F. S., R. A. Olson and R. G. Crickard: Respiration and intensity dependence of photosynthesis in Chlorella. J. gen. Physiol. 36, 529–561 (1953).PubMedCrossRefGoogle Scholar
  646. Brown, A. H.: The effects of light on respiration using isotopically enriched oxygen. Amer. J. Bot. 40, 719–729 (1953).CrossRefGoogle Scholar
  647. Brown, E. and N. Good: Photochemical reduction of oxygen in chloroplast preparations and in green plant cells. I. The study of oxygen exchanges in vitro and in vivo. Arch. Biochem. 57, 340–354 (1955).PubMedCrossRefGoogle Scholar
  648. Brown, A. H., A. O. C. Nier and R. W. van Norman: Measurement of metabolic gas exchange with a recording mass spectrometer. Plant Physiol. 27, 320–334 (1952).PubMedCrossRefGoogle Scholar
  649. Brown, A. H., and G. C. Webster: The influence of light on the rate of respiration of the blue-green alga Anabaena. Amer. J. Bot. 40, 753–758 (1953).CrossRefGoogle Scholar
  650. Brown, A. H., and C. P. Whittingham: Identification of the carbon dioxide burst in Chlorella using the recording mass spectrometer. Plant Physiol. 30, 231–237 (1955).PubMedCrossRefGoogle Scholar
  651. Brown, R.: The gaseous exchange of seeds and isolated cotyledons of Cucurbita pepo. Ann. Bot. 6, 293–321 (1942).Google Scholar
  652. Buchanan, D. L., A. Nakao and G. Edwards: Carbon isotope effects in biological systems. Science 117, 541–545 (1953).PubMedCrossRefGoogle Scholar
  653. Bukatsch: Beiträge zur Kenntnis der Kohlensäureassimilation durch Süßwasseralgen. Jb. wiss. Bot. 81, 419–463 (1935).Google Scholar
  654. Burk, D., S. B. Hendricks, M. Korzenovsky, V. Schocken and O. Warburg: The maximum efficiency of photosynthesis: A rediscovery. Science 110, 225–229 (1949).PubMedCrossRefGoogle Scholar
  655. Burk, D., u. O. Warburg: 1-Quanten-Mechanismus und Energie-Kreisprozeß bei der Photosynthèse. Naturwissenschaften 37, 560 (1950).CrossRefGoogle Scholar
  656. Burk, D., u. O. Warburg: Ein-Quanten-Reaktion und Kreisprozeß der Energie bei der Photosynthèse. Z. Naturforsch. 6b, 12–22 (1951).Google Scholar
  657. Butler, W. L.: Transient phenomena in leaves as recorded by a gas thermal conductivity meter. In: Research in Photosynthesis, edit, by H. Gaffron u. a., pp. 399–405. New York: Interscience Publishers 1957.Google Scholar
  658. Cahours, M. A.: Recherches sur la respiration des fruits. C. R. Acad. Sci. (Paris) 58, 495–500 (1864a).Google Scholar
  659. Cahours, M. A.: Recherches sur la respiration des fleurs. C. R. Acad. Sci. (Paris) 58. 1206–1209 (1864b).Google Scholar
  660. Čajlachjan, M. Ch., u. A. N. Bojarkin: Der Einfluß der Tageslänge auf die Aktivität der oxydativen Fermente in Pflanzen. Dokl. Akad. Nauk SSSR. 105, 592–595 (1955) [Russisch]. Ref. in Ber. wiss. Biol. 107, 68 (1956).Google Scholar
  661. Calvin, M.: The path of carbon in photosynthesis. VI. J. chem. Educat. 26, 639–657 (1949).CrossRefGoogle Scholar
  662. Calvin, M.: Der Photo-synthesecyclus. Aligew. Chem. 68, 253–264 (1956 a).Google Scholar
  663. Calvin, M.: The photosynthetic carbon cycle. J. chem. Soc. 1956b, 1895–1915.Google Scholar
  664. Calvin, M., and J. A. Barltrop: A possible primary quantum conversion act of photosynthesis. Amer. chem. Soc. 74, 6153–6154 (1952).CrossRefGoogle Scholar
  665. Calvin, M., and A. A. Benson: The path of carbon in photosynthesis. Science 107, 476–480 (1948)PubMedCrossRefGoogle Scholar
  666. Calvin, M., and A. A. Benson: The path of carbon in photosynthesis. IV. The identity and sequence of intermediates in sucrose synthesis. Science 109, 140–142 (1949).PubMedCrossRefGoogle Scholar
  667. Calvin, M., and P. Massini: The path of carbon in photosynthesis. XX. The steady state. Experientia (Basel) 8, 445–447 (1952).CrossRefGoogle Scholar
  668. Champigny, M.-L.: Étude du métabolisme de l’acide glutamique dans les feuilles et les racines de Bryophyllum Daigremontianum Berger à l’aide d’acide glutamique marqué par 14C en 1 ou 3.4. C. R. Acad. Sci. (Paris) 246, 626–629 (1958).Google Scholar
  669. Cramer, M., and J. Myers: Effects of starvation on the metabolism of Chlorella. Plant Physiol. 24, 255–264 (1949).PubMedCrossRefGoogle Scholar
  670. Curtel, G.: Recherches physiologiques sur la fleur. Ann, Sci. nat. Bot. (Paris), VIII. sér. 6, 221–308 (1897).Google Scholar
  671. Damaschke, K., F. Tödt, D. Burk and O. Warburg: An electrochemical demonstration of the energy cycle and maximum quantum yield in photosynthesis. Biochim. biophys. Acta 12, 347–355 (1953).PubMedCrossRefGoogle Scholar
  672. Davis, E. A.: Likelihood of photorespiration or light induced respiration in green plants. Science 112, 113–115 (1950).PubMedCrossRefGoogle Scholar
  673. Davis, E. A.: Photosynthetic Chlorella mutants. Amer. J. Bot. 39, 535–539 (1952).CrossRefGoogle Scholar
  674. Day, T. C.: The influence of light on the respiration of germinating barley and wheat. Trans. Proc. Bot. Soc. Edinburgh 20, 185–213 (1893/96).CrossRefGoogle Scholar
  675. Decker, J. P.: A rapid, postillumination deceleration of respiration in green leaves. Plant Physiol. 30, 82–84 (1955).PubMedCrossRefGoogle Scholar
  676. Decker, J. P.: Effects of temperature and carbon dioxide concentration on apparent photosynthesis of Mimulus. Plant Physiol. 33, Suppl. XXVI (1958).Google Scholar
  677. Denny, R. E.: Gas content of plant tissue and respiration measurements. Contrib. from Boyce Thomps. Inst. 14, 257–276 (1947).Google Scholar
  678. Detmer, W.: Über Pflanzenatmung. S.-B. Jena. Ges. Med. Naturw. 1881, 40–46.Google Scholar
  679. Detmer, W.: Der direkte und indirekte Einfluß des Lichtes auf die Pflanzenatmung. Ber. dtsch. bot. Ges. 11, 139–148 (1893a).Google Scholar
  680. Detmer, W.: Beiträge zur Kenntnis des Stoffwechsels keimender Kartoffelknollen. Ber. dtsch. bot. Ges. 11, 149–153 (1893b).Google Scholar
  681. Dhar, R. N.: Chemistry of photosynthesis. Cold Spr. Harb. Symp. quant. Biol. 3, 157–164 (1935).CrossRefGoogle Scholar
  682. Drude, O.: Die Biologie von Monotropa hypopitys L. und Neottia nidus avis unter vergleichender Hinzuziehung anderer Orchideen, S. 1–68. Göttingen 1873.Google Scholar
  683. Egle, K.: Photosynthèse bei geringen CO2-Partialdrucken. Naturwiss. 38, 350–351 (1951).CrossRefGoogle Scholar
  684. Egle, K., u. W. Schenk: Untersuchungen über die Reassimilation der Atmungs-kohlensäure bei der Photosynthese der Pflanzen. Beitr. Biol. Pflanzen 29, 75–105 (1952).Google Scholar
  685. Eichenberger, E.: Über die Atmung lebender Tabakblätter. Ber. Schweiz, bot. Ges. 62, 123–163 (1952),Google Scholar
  686. Elfving, F.: Studien über die Einwirkung des Lichtes auf die Pilze. Diss. Helsingfors 1890.Google Scholar
  687. Elliott, B. B., and A. C. Leopold: A relationship between photoperiodism and respiration. Plant Physiol. 27, 787–793 (1952).PubMedCrossRefGoogle Scholar
  688. Emerson, R.: The effect of intense light on the assimilatory mechanism of green plants, and its bearing on the carbon dioxide factor. Cold Spr. Harb. Symp. quant. Biol. 3, 128–137 (1935).CrossRefGoogle Scholar
  689. Emerson, R.: Diskussionsbemerkung zu dem Beitrag von L. R. Blinks. In: Research in Photosynthesis, edit, by H. Gaffron u. a., p. 448. New York: Interscience Publishers 1957.Google Scholar
  690. Emerson, R.: The quantum yield of photosynthesis. Ann. Rev. Plant Physiol. 9, 1–24 (1958).CrossRefGoogle Scholar
  691. Emerson, R., and R. V. Chalmers: Transient changes in cellular gas exchange and the problem of maximum efficiency of photosynthesis. Plant Physiol. 30, 505–529 (1955).CrossRefGoogle Scholar
  692. Emerson, R., and R. V. Chalmers: On the efficiency of photosynthesis above and below compensation of respiration. In: Research in Photosynthesis, edit, by H. Gaffron u. a., pp. 349–352. New York: Interscience Publishers 1957a.Google Scholar
  693. Emerson, R., and R. V. Chalmers: Transient changes in cellular gas exchange. In: Research in Photosynthesis, edit, by H. Gaffron u. a., pp. 406–408. New York: Interscience Publishers 1957 b.Google Scholar
  694. Emerson, R., and C. M. Lewis: Factors influencing the efficiency of photosynthesis. Amer. J. Bot. 26, 808–822 (1939).CrossRefGoogle Scholar
  695. Emerson, R., and C. M. Lewis: The quantum efficiency of photosynthesis. Carnegie Inst. Wash. Yearbook 39, 154–158 (1940).Google Scholar
  696. Emerson, R., and C. M. Lewis: Carbon dioxide exchange and the measurement of the quantum yield of photosynthesis. Amer. J. Bot. 28, 789–804 (1941).CrossRefGoogle Scholar
  697. Temerson, R., and C. M. Lewis: The dependence of the quantum yield of Chlorella photosynthesis on wavelength of the light. Amer. J. Bot. 30, 165–178 (1943).CrossRefGoogle Scholar
  698. Evenari, M., G. Neumann and S. Klein: The influence of red and infrared light on the respiration of photoblastic seeds. Physiol. Plantarum (Cph.) 8, 33–47 (1955).CrossRefGoogle Scholar
  699. Eyster, H. C.: Catalase activity in chloroplast pigment deficient types of corn. Plant Physiol. 25, 630–638 (1950).PubMedCrossRefGoogle Scholar
  700. Farkas, G. L., E. Konrad u. Z. Király: Lichtinduzierte Änderung der Malonat-Sensi-tivität der Zellatmung beim Weizen. Naturwissenschaften 44, 65–66 (1957 a).CrossRefGoogle Scholar
  701. Farkas, G. L., E. Konrad u. Z. Király: The effect of light on the malonate-sensitivity of plant respiration. Physiol. Plantarum (Cph.) 10, 346–355 (1957b).CrossRefGoogle Scholar
  702. Föckler, H.: Über den Einfluß des Lichtes auf die Atmung farbloser und assimilierender Gewebe und seine Rolle beim „funktionellen Sonnenstich“. Jb. wiss. Bot. 87, 45–92 (1939).Google Scholar
  703. Fortini, S.: Effetto della luce e delia concentrazione in CO2 sull’attività di alcuni sistemi enzimatici di tessuti fogliari. Ann. Sper. agr. (Roma) 9, 1175–1195 (1955).Google Scholar
  704. Franck, J.: An interpretation on the contradictory results in measurements of the photosynthetic quantum yields and related phenomena. Arch. Biochem. 23, 297–314 (1949).PubMedGoogle Scholar
  705. Franck, J.: Participation of respiratory intermediates in the process of photosynthesis as a explanation of abnormally high quantum yields. Arch. Biochem. 45, 190–229 (1953).PubMedCrossRefGoogle Scholar
  706. Franck, J., and C. S. French: Photooxidation processes in plants. J. gen. Physiol. 25, 309–324 (1942).CrossRefGoogle Scholar
  707. French, C. S., H. J. Kohn and P. S. Tang: Temperature characteristics for the metabolism of Chlorella. II. The rate of respiration of cultures of Chlorella pyrenoidosa as a function of time and of temperature. J. gen.Physiol. 18, 193–207 (1935).CrossRefGoogle Scholar
  708. French, R. C., and H. Beevers: Respiratory and growth responses induced by growth regulators and allied compounds. Amer. J. Bot. 40, 660–666 (1953).CrossRefGoogle Scholar
  709. Fritz, H., and H. Beevers: Cytochrome oxidase content and respiratory rates of etiolated wheat and barley seedlings. Plant Physiol. 30, 309–317 (1955).PubMedCrossRefGoogle Scholar
  710. Gabrielsen, E. K.: Treshold value of carbon dioxide concentration in photosynthesis of foliage leaves. Nature (Lond.) 161, 138–139 (1948).CrossRefGoogle Scholar
  711. Gabrielsen, E. K.: Photosynthesis in leaves at very low carbon dioxide concentrations. Nature (Lond.) 163, 359–360 (1949).CrossRefGoogle Scholar
  712. Gaffron, H.: Über die Unabhängigkeit der Kohlensäureassimilation der grünen Pflanzen von der Anwesenheit kleiner Sauerstoffmengen und über eine reversible Hemmung der Assimilation durch Kohlenoxyd. Biochem. Z. 280, 337–360 (1935).Google Scholar
  713. Gaffron, H.: von Blausäure und Wasserstoff-Peroxyd auf die Blackmansche Reaktion in Scenedesmus. Biochem. Z. 292, 241–270 (1937).Google Scholar
  714. Gaffron, H.: Über auffallende Unterschiede in der Physiologie nahe verwandter Algenstämme, nebst Bemerkungen über „Lichtatmung“. Biol. Zbl. 59, 302–313 (1939a).Google Scholar
  715. Gaffron, H.: A tentative picture of the relation between photosynthesis and oxidation reactions in green plants. Cold Spr. Harb. Symp. quant. Biol. 7, 377–384 (1939b).CrossRefGoogle Scholar
  716. Gaffron, H.: Studies on the induction period of photosynthesis and light respiration in green algae. Amer. J. Bot. 27, 204–216 (1940).CrossRefGoogle Scholar
  717. Gaffron, H.: Transients in the carbon dioxide gas exchange of algae. Research in Photosynthesis, edit, by H. Gaffron u. a., pp. 430–443. New York: Interscience Publishers 1957.Google Scholar
  718. Gaffron, H., and E. W. Fager: The kinetics and chemistry of photosynthesis. Ann. Rev. Plant Physiol. 2, 87–114 (1951).CrossRefGoogle Scholar
  719. Gaffron, H., u. J. Rosenberg: Über Rückreaktionen bei der Photosynthèse. Naturwissenschaften 42, 354–364 (1955).CrossRefGoogle Scholar
  720. Galston, A. W.: Riboflavin, light, and the growth of plants. Science 111, 619–624 (1950).PubMedCrossRefGoogle Scholar
  721. Garreau, M.: De la respiration chez des plants. Ann. Sci. nat. Bot. (Paris), III. sér. 15, 5–36 (1851).Google Scholar
  722. Genevois, L.: Über Atmung und Gärung in grünen Pflanzen. Biochem. Z. 186, 461–473 (1927).Google Scholar
  723. Gessner, F.: Die Wirkung des Lichtes und der ultravioletten Strahlung auf die Pflanzenatmung. Planta (Berl.) 29, 165–178 (1939).CrossRefGoogle Scholar
  724. Gibbs, M.: The position of C14 in sunflower leaf metabolites after exposure of leaves to short period photosynthesis and darkness in an atmosphere of C14O2. Plant Physiol. 26, 549–556 (1951).PubMedCrossRefGoogle Scholar
  725. Gibbs, M.: Effect of light intensity on the distribution of C14 in sunflower leaf metabolites during photosynthesis. Arch. Biochem. 45, 156–160 (1953).PubMedCrossRefGoogle Scholar
  726. Gibbs, M., and H. Beevers: Glucose dissimilation in the higher plant. Effect of age of tissue. Plant Physiol. 30, 343–347 (1955).PubMedCrossRefGoogle Scholar
  727. Gibbs, M., and M. A. Cynkin: The photosynthetic carbon cycle in chloroplasts. Plant Physiol. 33 Suppl. XVIII (1958).Google Scholar
  728. Gibbs, M., and O. Kandler: Asymmetric distribution of C14 in sugars formed during photosynthesis. Proc. nat. Acad. Sci. (Wash.) 43, 446–451 (1957).CrossRefGoogle Scholar
  729. Goodwin, B. C., and E. R. Waygood: Succinoxidase inactivation by a lecithinase in barley seedlings. Nature (Lond.) 174, 517–518 (1954).CrossRefGoogle Scholar
  730. Gregory, F. G., I. Spear and K. V. Thimann: The interrelation between CO2 metabolism and photoperiodism in Kalanchoë. Plant Physiol. 29, 220–229 (1954).PubMedCrossRefGoogle Scholar
  731. Greve, E.: Untersuchungen über das Atmungsverhalten von Hefen. I. Die Bedeutung vom Kulturalter und vom Sauerstoffgehalt. Arch. Mikrobiol. 26, 254–272 (1957).PubMedCrossRefGoogle Scholar
  732. Griffiths, M., W. R. Sistrom, G. Cohen-Bazire, R. Y. Stanier and M. Calvin: Function of carotenoids in photosynthesis. Nature (Lond.) 176, 1211–1215 (1955).CrossRefGoogle Scholar
  733. Groner, M. G.: Respiration of green and chlorophyll-deficient types in maize. Amer. J. Bot. 23, 381–385 (1936).CrossRefGoogle Scholar
  734. Gyr, J.: Les acides organiques des feuilles de Pelargonium peltatum et leurs variations en fonction de la durée de l’éclairement. C. R. Acad. Sci. (Paris) 242, 1203–1204 (1956).Google Scholar
  735. Hageman, R. H., and D. I. Arnon: Changes in glyceraldehyde dehydrogenase during the life cycle of a green plant. Arch. Biochem. 57, 421–436 (1955).PubMedCrossRefGoogle Scholar
  736. Hagen, C. E., H. A. Borthwick and S. B. Hindricks: Oxygen consumption of lettuce seed in relation to photo-control of germination. Bot. Gaz. 115, 4, 360–364 (1954).CrossRefGoogle Scholar
  737. Harder, R.: Beiträge zur Kenntnis des Gaswechsels der Meeresalgen. Jb. wiss. Bot. 56, 254–298 (1915).Google Scholar
  738. Harder, R.: Über die Assimilation von Kälte- und Wärmeindividuen der gleichen Pflanzenspezies. Jb. wiss. Bot. 64, 169–200 (1925).Google Scholar
  739. Heath, O. V. S.: Assimilation by green leaves with stomatal control eliminated. Symp. Soc. exp. Biol. 5, 94–114 (1951).Google Scholar
  740. Honda, S. J.: Ascorbic acid oxidase in barley roots. Plant Physiol. 30, 174–181 (1955a).PubMedCrossRefGoogle Scholar
  741. Honda, S. J.: Succinoxidase and cytochrome oxidase in barley roots. Plant Physiol. 30, 402–410 (1955b).PubMedCrossRefGoogle Scholar
  742. Hunter, U. W., R. Hunter, J.W. King and A. V. Pinkney: Effects of light on the rate of respiration in the stem of Pimm sativum. Plant Physiol. 31, 167–169 (1956).PubMedCrossRefGoogle Scholar
  743. James, W. O.: Plant Respiration, S. 54–130. Oxford: Clarendon Press 1953 a.Google Scholar
  744. James, W. O.: The use of respiratory inhibitors. Ann. Rev, Plant Physiol. 4, 59–90 (1953b).CrossRefGoogle Scholar
  745. James, W. O., and M. M. Ward: The dieca effect in the respiration of barley. Proc. roy. Soc. B 147, 309–315 (1957).CrossRefGoogle Scholar
  746. Johannsson, N.: Zur Kenntnis der Kohlensäureassimilation einiger Farne. Svensk bot. Tidskr. 17, 107–236 (1923).Google Scholar
  747. Johnston, E. S., and R. L. Weintraub: Report on the division of radiation and organisms. Ann. Rep. Smith. Inst. Publ. 3651, 111–113 (1941).Google Scholar
  748. Johnston, J. A., and A. H. Brown: The effect of light on the oxygen metabolism of the photosynthetic bacterium Rhodospirillum rubrum. Plant Physiol. 29, 177–182 (1954).PubMedCrossRefGoogle Scholar
  749. Kandler, O.: Über die Beziehungen zwischen Phosphathaushalt und Photosynthese. I. Z. Naturforsch. 5b, 423–437 (1950).Google Scholar
  750. Kandler, O.: Über die Beziehungen zwischen Phosphathaushalt und Photosynthèse. II. Z. Naturforsch. 9b, 625–644 (1954).Google Scholar
  751. Kandler, O.: Über die Beziehungen zwischen Phosphathaushalt und Photosynthese. III, Z. Naturforsch. 10b, 38–46 (1955).Google Scholar
  752. Kandler, O.: Neuere Untersuchungen über den Weg des Kohlenstoffs in der Photosynthese. Vortrag, gehalten auf der Hauptverslg der Ges. dtsch. Chemiker in Berlin, Okt. 1957a. Ref. in Naturw. Rdsch. 11, 24–25 (1958).Google Scholar
  753. Kandler, O.4: Über die Beziehungen zwischen Phosphathaushalt und Photosynthèse. Z. Naturforsch. 12b, 271–280 (1957b).Google Scholar
  754. Kandler, O.: Identifizierung von radioaktiver Hama-melonsäure aus Chlorella nach kurzfristiger Photosynthèse in C14O2 und hohen KCN-Kon-zentrationen. Naturwissenschaften 44, 562–563 (1957 c).CrossRefGoogle Scholar
  755. Kandler, O.: Occurrence of an unknown radioactive substance after short-time photosynthesis in C14O2. Arch. Biochem. 73, 38–42 (1958 a).PubMedCrossRefGoogle Scholar
  756. Kandler, O.: Der Einfluß von Alkoholvergiftung auf die Verteilung von C14 nach kurzfristiger Photosynthese in C14O2. Z. Naturforsch. 13b, 219–221 (1958b).Google Scholar
  757. Kandler, O., and M. Gibbs: Asymmetrie distribution of C14 in the glucose phosphates formed during photosynthesis. Plant Physiol. 31, 411–412 (1956).PubMedCrossRefGoogle Scholar
  758. Kandler, O., and M. Gibbs: Asymmetric distribution of C14 in sugars formed during photosynthesis. Proc. nat. Acad. Sci. (Wash.) 43, 446–451 (1957).CrossRefGoogle Scholar
  759. Kandler, O., u. F. Schötz: Untersuchungen über die photooxydative Farbstoff Zerstörung und Stoffwechselhemmung bei Chlorella-Mutanten und panaschierten Oenotheren. Z. Natur-forsch. 11b, 708–718 (1956).Google Scholar
  760. Kipp, M.: Die Abgabe von Kohlensäure und die Aufnahme von Sauerstoff bei der Keimung Hchtgeförderter Samen von Nicotiana tabacum. Jb. wiss. Bot. 71, 533–595 (1929).Google Scholar
  761. Kniep, H.: Über Assimilation und Atmung der Meeresalgen. Int. Rev. ges. Hydrobiol. u. Hydrograph. 7, 1–38 (1915/16).CrossRefGoogle Scholar
  762. Kok, B.: A critical consideration of the quantum yield of Chlorella photosynthesis. Enzymologia 13, 1–56 (1948).Google Scholar
  763. Kok, B.: The interrelation of respiration and photosynthesis in green plants. Biochim. biophys. Acta 3, 625–631 (1949).CrossRefGoogle Scholar
  764. Kok, B.: Photo-induced interaction in metabolism of green plant cells. Symp. Soc. exp. Biol. 5, 211–221 (1951).Google Scholar
  765. Kok, B.: On the efficiency of Chlorella growth, Acta bot, Néerl. 1, 445–467 (1952).Google Scholar
  766. Kok, B.: Some sensitive and recording volumeters. Biochim. biophys. Acta 16, 35–44 (1955).PubMedCrossRefGoogle Scholar
  767. Kok, B., and C. J. P. Spruit: High initial rates of gas-exchange in respiration and photosynthesis in Chlorella. Biochim. biophys. Acta 19, 212–223 (1956).PubMedCrossRefGoogle Scholar
  768. Kok, B., and C. J. P. Spruit: Report on some recent results at Wageningen. I. Transitory rates. In: Research in Photosynthesis, edit, by H. Gaffron u. a., pp. 353–354. New York: Interscience Publishers 1957.Google Scholar
  769. Kolesnikov, P. A., u. S. V. Emenova: Über die Wirkung von Licht und von Glykolsäure auf die Glykolsäureoxydase von Pflanzen. Zur Frage der sogenannten „Adaptation“ von Sämlingen. Dokl. Akad. Nauk SSSR., N. S. 109, 152–155 (1956) [Russisch]. Ref. in Ber. wiss. Biol. 113, 152 (1957).Google Scholar
  770. Kolkwitz, R.: Über den Einfluß des Lichtes auf die Atmung niederer Pilze. Jb. wiss. Bot. 33,128–165 (1899).Google Scholar
  771. Kratz, W. A., and J. Myers: Photosynthesis and respiration of three blue-green algae. Plant Physiol. 30, 275–280 (1955).PubMedCrossRefGoogle Scholar
  772. Kretjsler, U.: Beobachtungen über Assimilation und Atmung der Pflanzen. IV. Verhalten bei höheren Temperaturen; Kohlensäureausscheidung seitens getöteter Exemplare; Kohlensäureverbrauch, wenn Ober- oder Unterseite der Blätter dem Licht zugewendet. Landw. Jb. 19, 649–668 (1890).Google Scholar
  773. Lavorel, J.: Influence de la lumière sur l’activité catalasique des suspensions de chloro-plastes. C. R. Acad. Sci. (Paris) 238, 1074–1076 (1954a).Google Scholar
  774. Lavorel, J.: Influence de la lumière sur l’activité catalasique des suspensions de chloro-plastes. C. R. Acad. Sci. (Paris) 238, 1074–1076 (1954a).Google Scholar
  775. Lavorel, J.: Quelques caractéristiques cinétiques de l’action de la lumière sur la catalase des chloroplastes. C. R. Acad. Sci. (Paris) 239, 1706–1708 (1954b).Google Scholar
  776. Lavorel, J.: Influence de la lumière sur l’activité catalasique des suspensions de chloroplastes. 8. Congr. Int. Bot. Paris, Rapp. et Comm., Sect. 11, 24–28 (1954c).Google Scholar
  777. Lavorel, J.: Photo-inhibition de la catalase des chloroplastes. Ann. Inst. Nat. Rech, agronom., Sér. A 7, 63–113 (1956a).Google Scholar
  778. Lavorel, J.: Photo-inhibition de la catalase des chloroplastes. Biochim. biophys. Acta 22, 226–237 (1956b).PubMedCrossRefGoogle Scholar
  779. Leggatt, C. W.: A contribution to the study of dormancy in seeds. Canad. J. Res. 26, C, 194–217 (1948).CrossRefGoogle Scholar
  780. Lenhoff, H. M., D. J. D. Nicholas and N. O. Kaplan: Effects of oxygen, iron, and molybdenum on routes of electron transfer in Pseudomonas fluorescens. J. biol. Chem. 220, 983–995 (1956).PubMedGoogle Scholar
  781. Leopold, A. C, and F. S. Guernsey: Respiratory responses to red and infra-red light. Physiol. Plantarum (Cph.) 7, 30–40 (1954).CrossRefGoogle Scholar
  782. Lippe, A., Prinz zur: Über den Einfluß des vorangegangenen Licht-Dunkelwechsels auf die CO2-Ausscheidung der Primärblätter von Phaseolus mvltiflorus in anschheßender Dunkelheit. Z. Bot. 44, 297–318 (1956).Google Scholar
  783. Lippe, A., Prinz zur: Livingston, R., and J. Franck: Assimilation and respiration of excised leaves at high concentrations of carbon dioxide. Amer, J. Bot. 27, 449–458 (1940).CrossRefGoogle Scholar
  784. Löwschin, A.: Zur Frage über den Einfluß des Lichtes auf die Atmung der niederen Pilze. Beih. bot. Zbl., I. Abt. 23, 54–64 (1908).Google Scholar
  785. Lyon, Ch. J.: The influence of radiation on plant respiration and fermentation. In: Biological effects of radiation, edit, by B. M. Duggar, Vol. 2, pp. 1059–1072. New York u. London: McGraw-Hill Book Company 1936.Google Scholar
  786. Magee, J. L., T. W. de Witt, E. C. Smith and F. Daniels: A photocalorimeter. The quantum efficiency of photosynthesis in algae. J. Amer. chem. Soc. 61, 3529–3533 (1939).CrossRefGoogle Scholar
  787. Marsh, P. B., and D. R. Goddard: Respiration and fermentation in the carrot, Davcus carota. I. Respiration. Amer. J. Bot. 26, 724–728 (1939).CrossRefGoogle Scholar
  788. Maximow, N. A.: Über den Einfluß des Lichtes auf die Atmung der niederen Pilze. Zbl. Bakt., II. Abt. 9, 193–205, 261–272 (1902).Google Scholar
  789. McAlister, E. D.: Time course of photosynthesis for a higher plant. Smiths. Misc. Coll. 95, No 24, 1–17 (1937).Google Scholar
  790. McAlister, E. D.: The chlorophyll-carbon dioxide ratio during photosynthesis. J. gen. Physiol. 22, 613–636 (1939).PubMedCrossRefGoogle Scholar
  791. Mehler, A. H.: Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch. Biochem. 33, 65–77 (1951a).PubMedCrossRefGoogle Scholar
  792. Mehler, A. H.: Studies on reactions of illuminated chloroplasts. II. Stimulation and inhibition of the reaction with molecular oxygen. Arch. Biochem. 34, 339–351 (1951b).PubMedCrossRefGoogle Scholar
  793. Mehler, A. H., and A. H. Brown: Studies on reactions of illuminated chloroplasts. III. Simultaneous photo-production and consumption of oxygen studied with oxygen isotopes. Arch. Biochem. 38, 365–370 (1952).PubMedCrossRefGoogle Scholar
  794. Metzner, H.: Instabile Kohlensäurebindung in Algenzellen. Biol, Zbl. 77, 513–557 (1958).Google Scholar
  795. Metzner, H., B. Metzner and M. Calvin: Labile products of early carbon dioxide fixation in photosynthesis. Arch. Biochem. 74, 1–6 (1958a).PubMedCrossRefGoogle Scholar
  796. Metzner, H., H. Simon u. B. Metzner: Instabile C02-Fixie-rung und Photosynthese. Z. Naturforsch. 13b, 366–374 (1958b)Google Scholar
  797. Metzner, H., H. Simon, B. Metzner and M. Calvin: Evidence for an unstable CO2 fixation product in algal cells. Proc. nat. Acad. Sci. (Wash.) 48, 892–895 (1957).CrossRefGoogle Scholar
  798. Meyer, A., u. N. T. Deleano: Die periodischen Tag- und Nachtschwankungen der Atmungsgröße im Dunkeln befindlicher Laubblätter und deren vermutliche Beziehungen zur Kohlensäureassimilation. I. Z. Bot. 3, 657–701 (1911); IL 5, 209–320 (1913).Google Scholar
  799. Miyachi, S., S. Izawa and H. Tamiya: Effect of oxygen on the capacity of carbon dioxide-fixation by green algae. J. Biochem. (Tokyo) 42, 221–224 (1955).Google Scholar
  800. Montfort, C: Beziehungen zwischen morphologischen und physiologischen Reduktionserscheinungen im Bereich der Licht-Ernährung bei saprophytischen Orchideen. Ber. dtsch. bot. Ges. 58, 41–48 (1940).Google Scholar
  801. Montfort, C, u. H. Föckler: Licht und Atmung bei Licht- und Dunkelgeweben, grünen und farblosen Organen. Planta (Berl.) 28, 515–534 (1938).CrossRefGoogle Scholar
  802. Montfort, C, u. K. Neydel: Zur Beurteilung der „Inaktivierung“ und des „Zeitfaktors“ der Lichtwirkung bei der Assimilation stomatafreier Schattenfarne. Jb. wiss. Bot. 68, 801–843 (1928).Google Scholar
  803. Montfort, C, u. G. Rosenstock: Die Lichtatmungsreaktion des Protoplasmas und ihre Beziehungen zur Qualität der Strahlung. Z. Natur-forsch. 5b, 171–173 (1950).Google Scholar
  804. Moore, W. E., and B. M. Dtjggar: Quantum efficiency of photosynthesis in Chlorella. In: Photosynthesis in plants, edit, by J. Franck and W. E. Loomis, pp.239–250. 2. Aufl. Ames: Iowa State College Press 1950.Google Scholar
  805. Morita, S.: The effect of light on the metabolism of lactic acid by Rhodopsevdomonas palustris. I. J. Biochem. (Tokyo) 42, 533–554 (1955).Google Scholar
  806. Morot, F. S.: Recherches sur la coloration des végétaux. Ann. Sci. nat. Bot. (Paris), III. Sér. 13, 160–235 (1849).Google Scholar
  807. Mortimer, D.C.: Evidence for an alternate pathway in photosynthetic assimilation. Naturwissenschaften 45, 116–117 (1958).CrossRefGoogle Scholar
  808. Mothes, K., I. Baatz u. H. Sagromsky: Die Bedeutung der Carotinoide für die Lichtausnutzung bei der Photosynthese. Planta (Berl.) 30, 289–293 (1939).CrossRefGoogle Scholar
  809. Müller, J.: Über die Verwendung von Magnos-Sauerstoff Schreibern für Gaswechselregistrierungen in der Biologie. Ber. dtsch. bot. Ges. 71, 205–223 (1958).Google Scholar
  810. Myers, J., and G. O. Burr: Studies on photosynthesis. Some effects of light of high intensity on Chlorella. J. gen. Physiol. 24, 45–67 (1941).CrossRefGoogle Scholar
  811. Naylor, A. W., R. Rabson and N. E. Tolbert: Aspartic-C14 acid metabolism in leaves, roots and stems. Physiol. Plantarum (Cph.) 11, 537–547 (1958).CrossRefGoogle Scholar
  812. Naylor, A. W., and N. E. Tolbert: Glutamic acid metabolism in green and etiolated barley plants. Physiol. Plantarum (Cph.) 9, 220–229 (1956).CrossRefGoogle Scholar
  813. Nelson, C. D., and G. Krotkov: Metabolism of C14 amino acids and amides in detached leaves. Canad. J. Bot. 34, 423–433 (1956).CrossRefGoogle Scholar
  814. Niel, C. B. van: The bacterial photosynthesis and their importance for the general problem of photosynthesis. Advanc. Enzymol. 1, 263–328 (1941).Google Scholar
  815. Nihei, T.: A phosphorylative process, accompanied by photochemical Uberation of oxygen, occurring at the stage of nuclear division in Chlorella cells. I. J. Biochem. (Tokyo) 42, 245–256 (1955).Google Scholar
  816. Nihei, T., T. Sasa, S. Migachi, K. Suzuki and s: Change of photosynthetic activity of Chlorella cells during the course of their normal life cycle. Arch. Mikrobiol. 21, 156–166 (1954a).PubMedGoogle Scholar
  817. Nihei, T., T. Sasa, S. Migachi, K. Suzuki and H. Tamiya: Change of photosynthetic activity of Chlorella cells during their normal life cycle. VIII. Congr. Int. Bot. Paris, Rapp. et Comm. Sect. 11, 16–17 (1954b).Google Scholar
  818. Noddack, W., u. C. Kopp: Untersuchungen über die Assimilation der Kohlensäure durch die grünen Pflanzen. IV. Hoppe-Seylers Z. physiol. Chem. 187, 79–102 (1940).Google Scholar
  819. Noll, C. R., and R. H. Burris: Nature and distribution of glycolic oxidase in plants. Plant Physiol. 29, 261–265 (1954).PubMedCrossRefGoogle Scholar
  820. Norman, R. W. van, and A. H. Brown: The relative rates of photosynthetic assimilation of isotopic forms of carbon dioxide. Plant Physiol. 27, 691–709 (1952).PubMedCrossRefGoogle Scholar
  821. Olson, R. A., F. S. Brackett and R. G. Crickard: Transients in O2 evolution by Chlorella in light and darkness. II. Influence of O2 concentration and respiration, In: Research in Photosynthesis, edit, by H. Gaffron u.a., pp. 419–429. New York: Inter-science Publishers 1957.Google Scholar
  822. Oorschot, J. L. P. van: On the composition of the cell material and the light energy conversion during growth of Chlorella in relation to nitrate supply. VIII. Congr. Int. Bot. Paris, Rapp. et. Comm., Sect. 11, 17 (1954).Google Scholar
  823. Paauw, T. van der: The indirect action of external factors on photosynthesis. Rec. Trav. bot. néerl. 29, 497–620 (1932).Google Scholar
  824. Pabija, P., and A. B. Saran: The effect of light on the respiration of starved leaves. Ann. Bot. 48, 347–354 (1934).Google Scholar
  825. Pasinettie Crancini: Ricerche sugli effetti delle „radiazioni” su eumitici patogeni in funzione del coefficiente respiratorio. Riv. Parol. Veg. 28, 193–203 (1938).Google Scholar
  826. Pauchon, A.: Über den Einfluß des Lichtes auf die Atmung von Samen während der Keimung. C. R. Acad. Sci. (Paris) 91, 864–866 (1880).Google Scholar
  827. Petering, H. G., B. M. Dtjggar and F. Daniels: Quantum efficiency of photosynthesis in Chlorella. II. J. Amer. chem. Soc. 61, 3525–3529 (1939).CrossRefGoogle Scholar
  828. Pirson, A.: Stoffwechsel organischer Verbindungen. I. (Photosynthèse). Fortschr. Bot. 19, 235–262 (1957).Google Scholar
  829. Purjewicz, K.: Über die Wirkung des Lichtes auf den Atmungs-prozeß bei den Pflanzen. Schr, naturf. Ges. Kiew 11, 211–259 (1890) [Russisch].Google Scholar
  830. Purjewicz, K.: Über die Wirkung des Lichtes auf den Atmungs-prozeß bei den Pflanzen. Ref. in Bot. Zbl. (12. Jg.) 47/48, 130–132 (1891).Google Scholar
  831. Rabinowitch, E. J.: Photosynthesis and related processes. I. New York: Interscience Publ., Inc. 1945. II/l (1952); II/2 (1956).CrossRefGoogle Scholar
  832. Ranjan, S.: L’effet de la lumière sur la respiration des plantes. Diss. Toulouse 1932.Google Scholar
  833. Ranjan, S.: Studies on the photochemical action in plants. L Respiration on entire Pistia plants in light. J. Indian bot. Soc. 19, 19–31 (1940).Google Scholar
  834. Ranjan, S., and B. B. L. Saksena: Studies on the photochemical action in plants. III. The influence of visible light on the rate of respiration of some coloured flowers. J, Indian bot. Soc 18, 99–103 (1939/40),Google Scholar
  835. Reznik, H.: Vergleich einer weißen Mutante von Neottia nidus-avis (L.) L. C. Rich, mit der braunen NormaKorm. Eine physiologisch-anatomische Studie. Planta (Berl.) 51, 694–704 (1958).CrossRefGoogle Scholar
  836. Richards, F. J.: The relation between respiration and water content in higher fungi, with a note on the effect of light on respiration. New Phytologist 26, 187–201 (1927).CrossRefGoogle Scholar
  837. Rosenstock, G.: Kohlendioxyd-Entbindung nichtassimilierender Gewebe im Licht. Kritische Studien zum Problem der Lichtatmung. Planta (Berl.) 40, 70–92 (1951).CrossRefGoogle Scholar
  838. Rosenstock, G.: Die Zeitwirkung von Temperaturänderungen auf die CO2-Abgabe von Kartoffelparenchym. Planta (Berl.) 45, 208–212 (1955a).CrossRefGoogle Scholar
  839. Rosenstock, G.: Die spektrale Temperaturkurve von Kartoff elparenchym und ihre Bedeutung für das Lichtatmungsproblem. Planta (Berl.) 45, 591–595 (1955b).CrossRefGoogle Scholar
  840. Rosenstock, G.: Über die Beziehungen zwischen spektraler Temperatur -und Transmissionskurve von Kartoffelparenchym. Flora (Jena) 142, 631–637 (1955 c).Google Scholar
  841. Rosenstock, G.: Gaswechselstudien an Neottia nidus avis. 1957 (unveröffentlicht).Google Scholar
  842. Rubenstein, B. B.: Decrease in rate of oxygen consumption under the influence of visible light on Sarcina lutea. Science 74, 419–420 (1931).PubMedCrossRefGoogle Scholar
  843. Rubenstein, B. B.: The kinetics of intracellular carbohydrate oxidation of Sarcina lutea. J. cell. comp. Physiol. 2, 27–40 (1932/33),CrossRefGoogle Scholar
  844. Rubin, B. A., J. A. Cherna-vina u. A. V. Mikheeva: Der Einfluß des Lichtes auf die Aktivität der Cytochromoxydase, Dokl. Akad. Nauk SSSR., N. S. 105, 1039–1041 (1955) [Russisch].Google Scholar
  845. Rubin, B. A., J. A. Cherna-vina u. A. V. Mikheeva: Der Einfluß des Lichtes auf die Aktivität der Cytochromoxydase, Ref. in Ber. wiss. Biol. 107, 68–69 (1956).Google Scholar
  846. Ryther, J. H.: The ratio of photosynthesis to respiration in marine plankton algae and its effect upon the measurement of productivity. Deep-Sea Res. 2, 134–139 (1954).Google Scholar
  847. Ryther, J. H.: Interrelation between photosynthesis and respiration in the marine flagellate Dunaliella euchlora. Nature (Lond.) 178, 861–863 (1956).CrossRefGoogle Scholar
  848. Sagromsky, H.: Die Bedeutung des Lichtfaktors für den Gaswechsel planktontischer Diatomeen und Chlorophyceen. Planta (Berl.) 33, 299–339 (1942/43).CrossRefGoogle Scholar
  849. Schanderl, H.: Studien über die Körpertemperatur submerser Wasserpflanzen. Ber. dtsch. bot. Ges. 68, 28–34 (1955).Google Scholar
  850. Schlegel, H.-G.: Die Verwertung organischer Säuren durch Chlorella im Licht. Planta (Berl.) 47, 510–526 (1956).CrossRefGoogle Scholar
  851. Schön, W.: Periodische Schwankungen der Photosynthese und Atmung bei Hydrodictyon. Flora (Jena) 142, 347–380 (1955).Google Scholar
  852. Schötz, F.: Untersuchungen an panaschierten Oenotheren. I. Über die photosynthetische Leistungsfähigkeit der Chloroplasten in den blassen Arealen einiger Piastidenmutanten und Bastardschecken. Z. Naturforsch. 10b, 100–108 (1955).Google Scholar
  853. Schomer, H.A.: The effects of radiation on enzymes. In: Biological effects of radiation, edit, by B. M. Duggar, Vol. 2, pp. 1151–1165. New York and London: McGraw-Hill Book Company 1936.Google Scholar
  854. Schröp-pel, F.: Katalase, Peroxydase und Atmung bei der Keimung Hchtempfindlicher Samen von Nicotiana tabacum. Beih, bot. Zbl. 51, 377–407 (1933).Google Scholar
  855. Schtjtzenberger, P., et E. Quinquaud: Sur la respiration des végétaux aquatiques immergés. C. R. Acad. Sci. (Paris) 77, 272–275 (1873).Google Scholar
  856. Seybold, A., u. F. Brambring: Über die thermischen Eigenschaften der Laubblätter. I. Planta (Berl.) 20, 201–229 (1933).CrossRefGoogle Scholar
  857. Shafer, Y. Jr.: Effect of light on CO2 in leaves. Plant Physiol. 13, 141–156 (1938).PubMedCrossRefGoogle Scholar
  858. Shibata, K., u. E. Yaktj-shiji: Der Reaktionsmechanismus der Photosynthese. Naturwissenschaften 21, 267–268 (1933).CrossRefGoogle Scholar
  859. Shorawsky, W.: Über die Frage des Lichteinflusses auf die Atmungsintensität von Pilzen. Trav. Soc. Nat. Varsovie, compt. Read, Sect. 1–2, 6 (3), 49–57 (1894) [Russisch].Google Scholar
  860. Simonis, W.: Untersuchungen zur lichtabhängigen Phosphorylierung. IL Z. Naturforsch. 11b, 354–363 (1956).Google Scholar
  861. Simonis, W., u. M. Ehrenberg: Untersuchungen zur lichtabhängigen Phosphorylierung. IV. Die Wirkung des Lichtes auf die 32P-Einlagerung bei chlorophyllfreien Pflanzenzellen und -geweben. Z. Naturforsch. 12b, 156–163 (1957).Google Scholar
  862. Simonis, W., u. K. H. Grube: Untersuchungen über den Zusammenhang von Phosphathaushalt und Photosynthese. Z. Naturforsch. 7b, 194–196 (1952).Google Scholar
  863. Simonis, W., u. K. H. Grube: Weitere Untersuchungen über Phosphathaushalt und Photosynthese. Z. Naturforsch. 8b, 312–317 (1953).Google Scholar
  864. Simonis, W., u. H. Kating: Untersuchungen zur lichtabhängigen Phosphorylierung. I. Z. Naturforsch. 11b, 165–172 (1956a).Google Scholar
  865. Simonis, W., u. H. Kating: Untersuchungen zur lichtabhängigen Phosphorylierung. III. Die CO2-Abhängigkeit der 32P-Einlagerung in Ankistrodesmus. Z. Naturforsch. 11b, 704–708 (1956b).Google Scholar
  866. Simonis, W., H. Kating u. G. Ktjes: Untersuchungen zur lichtabhängigen Phosphorylierung. V. Methodische Fragen zur Extraktion und Papierchromatographie von 32P-markierten Verbindungen aus Algen. Z. Naturforsch. 12b, 812–813 (1957).Google Scholar
  867. Simonis, W., u. G. Weichart: Quantitative Unterschiede der Bildung von 32P-markierten phosphorylierten Verbindungen in Helodea. Z. Naturforsch. 13b, 55–57 (1958a).Google Scholar
  868. Simonis, W., u. G. Weichart: Untersuchungen zur lichtabhängigen Phosphorylierung. VII. Die Wirkung von Monojodessigsäure auf die Bildung von 32P-markierten phosphorylierten Verbindungen in Hdodea densa (Phosphoglycerinsäure ein Zwischenprodukt der Photosynthese?). Z. Naturforsch. 13b, 694–696 (1958b).Google Scholar
  869. Sissakian, N. M., u. I.I. Filippovich: Über die Lokalisierung der Cytochromoxydase in der pflanzlichen Zelle. Biochimija 21, 163–167 (1956) [Russisch].Google Scholar
  870. Sissakian, N. M., u. I.I. Filippovich: Über die Lokalisierung der Cytochromoxydase in der pflanzlichen Zelle. Ref. Ber. wiss. Biol. 108, 183 (1957).Google Scholar
  871. Spear, I., and K. V. Thimann: The interrelation between CO2 metabolism and photoperiodism in Kalanchoë. II. Effect of prolonged darkness and high temperatures. Plant Physiol. 29, 414–417 (1954).PubMedCrossRefGoogle Scholar
  872. Spoehr, H.A., and J.M. McGee: Studies in plant respiration and photosynthesis. Carnegie Inst. Wash. Publ. 325, 1–98 (1923).Google Scholar
  873. Spruit, C. J. P., and B. Kok: Simultaneous observation of oxygen and carbon dioxide exchange during non-steady state photosynthesis. Biochim. biophys. Acta 19, 417–424 (1956).PubMedCrossRefGoogle Scholar
  874. Stâlfelt, M. G.: Über die Beziehungen zwischen den Assimilations- und Atmungsgrößen. Svensk bot. Tidskr. 30, 343–354 (1936).Google Scholar
  875. Stâlfelt, M. G.: Über die Natur der Licht- und Temperatur-optima in der Kohlensäureassimilation. Svensk bot. Tidskr. 33, 383–417 (1939).Google Scholar
  876. Stee-mann Nielsen, E.: Der Mechanismus der Photosynthese. Dansk bot. Ark. 11, Nr 2, 1–95 (1944).Google Scholar
  877. Steemann Nielsen, E.: A reversible inactivation of chlorophyll in vivo. Physiol. Plantarum (Cph.) 2, 247–265 (1949)CrossRefGoogle Scholar
  878. Stee-mann Nielsen, E.: The use of radio-active carbon (C14) for measuring organic production in the sea. J. Cons. Internat. Explor. Mer 18, 117–140 (1952).Google Scholar
  879. Stee-mann Nielsen, E.: Carbon dioxide concentration, respiration during photosynthesis and maximum yield of photosynthesis. Physiol. Plantarum (Cph.) 6, 315–332 (1953).Google Scholar
  880. Stee-mann Nielsen, E.: The interaction of photosynthesis and respiration and its importance for the determination of C14-diserimination in photosynthesis. Physiol. Plantarum (Cph.) 8, 945–953 (1955).CrossRefGoogle Scholar
  881. Steemann Nielsen, E., and A.A.Al Kholy: Use of 14C-technique in measuring photosynthesis of phosphorus or nitrogen deficient algae. Physiol. Plantarum (Cph.) 9, 144–153 (1956).CrossRefGoogle Scholar
  882. Steward, F. C, and R. G. S. Bidwell: Nitrogen metabolism, respiration and growth of cultured plant tissue. Part IV. The impact growth on protein metabolism and respiration of carrot tissue expiants. General discussion of results. J. exp. Bot. 9, 285–305 (1958).CrossRefGoogle Scholar
  883. Steward, F. C, and J. F. Thompson: Photosynthesis and respiration: a reinterpretation of recent work with radioactive carbon. Nature (Lond.) 166, 593–596 (1950).CrossRefGoogle Scholar
  884. Stich, A.: Die Atmung der Pflanzen bei verminderter Sauerstoffspannung und bei Verletzung. Flora (Jena) 74, 1–57 (1891).Google Scholar
  885. Stocker, O.: Physiologische und ökologische Untersuchungen an Laub- und Strauchflechten. Flora (Jena), N. F. 21, 334–415 (1927).Google Scholar
  886. Stutz, R. E., and R. H. Burris: Photosynthesis and metabolism of organic acids in higher plants. Plant Physiol. 26, 226–243 (1951).PubMedCrossRefGoogle Scholar
  887. Tang, P. S.: Studies on the kinetics of cell respiration. III. The effect of ultraviolet light on the rate of oxygen consumption by Saccharomyces wanching. J. cell. comp. Physiol. 8, 117–123 (1936).CrossRefGoogle Scholar
  888. Tödt, F.: Elektrochemische Sauerstoffmessungen. Berlin: Walter de Gruyter u. Co. 1958.Google Scholar
  889. Tolbert, N. E., and R. H. Burris: Light activation of the plant enzyme which oxidizes glycolic acid. J. biol. Chem. 186, 791–804 (1950).PubMedGoogle Scholar
  890. Tranqtjil-lini, W.: Über den Einfluß von Übertemperaturen der Blätter bei Dauereinschluß in Küvetten auf die ökologische CO2-Assimilationsmessung. Ber. dtsch. bot. Ges. 67, 191–204 (1954).Google Scholar
  891. Trebst, A. V., H. Y. Tstjjimoto and I. Arnon: Separation of light and dark phase in the photosynthesis of isolated chloroplasts. Nature (Lond.) 182, 351–355 (1958).CrossRefGoogle Scholar
  892. Umbreit, W. W., R. H. Btjrris and J. F. Stauffer: Manometric Techniques. Minneapolis, Minn.: Burgess Publ. Co., rev. Ed. 1957.Google Scholar
  893. Veen, R. van der: Induction phenomena in photosynthesis. I. Physiol. Plantarum (Cph.) 2, 217–234; II. 2, 287–296 (1949); III. 3, 247–257 (1950).CrossRefGoogle Scholar
  894. Vejlby, K.: Induction phenomena in photosynthesis. Experiments with Polytrichum attenuatum. Physiol. Plantarum (Cph.) 11, 158–169 (1958 a).CrossRefGoogle Scholar
  895. Vejlby, K.: Induction phenomenon and CO2 gush in photosynthesis of Polytrichum attenuatum. Physiol. Plantarum (Cph.) 11, 866–877 (1958b).CrossRefGoogle Scholar
  896. Vittorio, P. V., G. Krotkov and G. B. Reed: Synthesis of radioactive sucrose by tobacco leaves from C14 uniformly labelled glucose and glucose-1-phosphate. Canad. J. Bot. 32, 369–377 (1954).CrossRefGoogle Scholar
  897. Warburg, O.: Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen. I. Biochem. Z. 100, 230–270 (1919); II. 103, 188–217 (1920).Google Scholar
  898. Warburg, O.: Über die Wirkung des Kohlenoxyds auf den Stoffwechsel der Hefe. Biochem. Z. 177, 471–484 (1926).Google Scholar
  899. Warburg, O.: I.- Quanten-Mechanismus der Photosynthese. Z. Elektrochem. 55, 447–452 (1951)Google Scholar
  900. Warburg, O.: Energetik der Photosynthese. Naturwissenschaften 39, 337–341 (1952).CrossRefGoogle Scholar
  901. Warburg, O.: Photodissozia-tion und induzierte Atmung, die Fundamental-Reaktionen der Photosynthese. Naturwissenschaften 42, 449–450 (1955).CrossRefGoogle Scholar
  902. Warburg, O., D. Burk, V. Schocken, M. Korzenovsky and S. B. Hendricks: Does light inhibit the respiration of green cells. Arch. Biochem. 23, 330–333 (1949).PubMedGoogle Scholar
  903. Warburg, O., H. Geleick u. K. Briese: Über die Aufspaltung der Photosynthese in Lichtreaktion und Rückreaktion. Z. Naturforsch. 6b, 417–424 (1951).Google Scholar
  904. Warburg, O., H. Klotzsch u. G. Krippahl: Über die Funktion der Glutaminsäure in Chlorella. Z. Naturforsch. 12b, 266 (1957a).Google Scholar
  905. Warburg, O., H. Klotzsch u. G. Krippahl: Über das Verhalten einiger Aminosäuren in Chlorella bei Zusatz von markierter Kohlensäure. Z. Naturforsch. 12b, 481–482 (1957b).Google Scholar
  906. Warburg, O., H. Klotzsch u. G. Krippahl: Glutaminsäure in Chlorella. Z. Naturforsch. 12b, 622–628 (1957c).Google Scholar
  907. Warburg, O., u. G. Krippahl: Beweis der Notwendigkeit der Glutaminsäure für die Photosynthese, Z. Naturforsch. 13b, 63–65 (1958a).Google Scholar
  908. Warburg, O., u. G. Krippahl: Sauerstoff-Halbwertdrucke der Photosynthese und Atmung. Z. Naturforsch. 13b, 66–68 (1958b).Google Scholar
  909. Warburg, O., u. G. Krippahl: Hül-Reaktionen. Z. Naturforsch. 13b, 509–514 (1958c).Google Scholar
  910. Warburg, O., G. Krippahl, W. Buchholz u. W. Schröder: Weiterentwicklung der Methoden zur Messung der Photosynthese. Z. Naturforsch. 8b, 675–686 (1953).Google Scholar
  911. Warburg, O., G. Krippahl u. W. Schröder: Über den chemischen Mechanismus der Kohlensäureassimilation. Naturwissenschaften 43, 237–241 (1956).CrossRefGoogle Scholar
  912. Warburg, O., W. Schröder, G. Krippahl u. H. Klotzsch: Photosynthese. Angew. Chem. 69, 627–634 (1957 d).CrossRefGoogle Scholar
  913. Wassink, E. C., and J. A. H. Kersten: Observations sur la photosynthèse et la fluorescence chlorophyllienne des diatomées. Enzymologia 11, 282–312 (1945).Google Scholar
  914. Webster, G. C., and A. W. Frenkel: Some respiratory characteristics of the blue-green alga Anabaena. Plant Physiol. 28, 63–69 (1953).PubMedCrossRefGoogle Scholar
  915. Weigl, J. W., P. M. Warrington and M. Calvin: The relation of photosynthesis to respiration. J, Amer. chem. Soc. 73, 5058–5063 (1951).CrossRefGoogle Scholar
  916. Weinstein, L. H., W. R. Robbins and W.W. Wainio: Assay of cytochrome oxidase activity of sunflower leaf tissue in relation to pH value and cation concentration of the buffer. Plant Physiol. 29, 398–399 (1954).PubMedCrossRefGoogle Scholar
  917. Weinstein, L. H., and W. R. Robbins: Effect of light on the catalase and cytochrome oxidase activities of leaf tissues of green and albino sunflower plants. Contrib. from Boyce Thompson Inst. 18, 225–230 (1955a).Google Scholar
  918. Weinstein, L. H., and W. R. Robbins: The effect of different iron and manganese nutrient levels on the catalase and cytochrome oxidase activities of green and albino sunflower leaf tissues. Plant Physiol. 30, 27–32 (1955b).PubMedCrossRefGoogle Scholar
  919. Weintratjb, R. L.: Radiation and plant respiration. Bot. Rev. (Cambridge) 10, 383–459 (1944).CrossRefGoogle Scholar
  920. Weintratjb, R. L., and E. S. Johnston: The influence of light and of carbon dioxide on the respiration of etiolated barley seedlings. Smiths. Misc. Coll. 140, No 4, 1–16 (1944).Google Scholar
  921. Whittingham, C. P.: Photosynthesis in Chlorella during intermittent illumination of long periodicity. Plant Physiol. 29, 473–477 (1954).PubMedCrossRefGoogle Scholar
  922. Whittingham, C. P.: Energy transformation in photosynthesis and the relation of photosynthesis to respiration. Biol. Rev. (Cambridge) 30, 40–64 (1955).CrossRefGoogle Scholar
  923. Whittingham, C. P.: Induction phenomena of photosynthetic algae at low partial pressures of oxygen. J. exp. Bot. 7, 273–289 (1956).CrossRefGoogle Scholar
  924. Whittingham, C. P.: Induction phenomena in photosynthetic algae at low partial pressures of oxygen. In: Research in Photosynthesis, edit, by H. Gaffron u. a., pp. 409–411. New York: Interscience Publishers 1957.Google Scholar
  925. Willaman, J. J., and W. R. Brown: Carbon dioxide dissolved in plant sap and its effect on respiration measurements. Plant Physiol. 5, 535–542 (1930).PubMedCrossRefGoogle Scholar
  926. Wilson, W. P.: Respiration of plants. Amer. J. Sci. III 23, 423–428 (1882a).Google Scholar
  927. Wilson, W. P.: Über Atmung der Pflanzen. Flora (Jena) 40, 93–96 (1882b).Google Scholar
  928. Wolf, J.: Einfluß einer vorangegangenen Lichtperiode auf die Größe der CO2-Ausscheidung grüner (unreifer) Äpfel im Dunkeln. Planta (Berl.) 50, 576–578 (1958).CrossRefGoogle Scholar
  929. Wolkoff, A. v., u. A. Mayer: Beiträge zur Lehre über die Atmung der Pflanzen. Landw. Jb. 3, 481–527 (1874).Google Scholar
  930. Wurmser, R., et R. Jacquot: Sur la relation entre l’état physique du protoplasma et son fonctionnement. I. Photosynthèse. Bull. Soc. Chim. biol. (Paris) 5, 305–315 (1923).Google Scholar
  931. Yemm, E., and B. F. Folkes: The metabolism of amino acids and proteins in plants. Ann. Rev. Plant Physiol. 9, 245–280 (1958).CrossRefGoogle Scholar
  932. Yuan, E. L., and F. Daniels: The effects of some inhibitors on the rates of photosynthesis and respiration by Chlorella. J. gen. Physiol. 39, 527–534 (1956).PubMedCrossRefGoogle Scholar
  933. Yuan, E., R. Evans and D. Daniels: Energy efficiency of photosynthesis by Chlorella. Biochim. biophys. Acta 17, 185–193 (1955).PubMedCrossRefGoogle Scholar
  934. Zalensky, O. V.: Über die Wechselwirkungen zwischen Photosynthese und Atmung. Bot. Ž. 42, 1674–1690 (1957) [Russisch].Google Scholar
  935. Zalensky, O. V.: Über die Wechselwirkungen zwischen Photosynthese und Atmung. Ref in Ber. wiss. Biol. 121, 307–308 (1958).Google Scholar
  936. Zbinovsky, V., and R. H. Bukeis: Metabolism of infiltrated organic acids by tobacco leaves. Plant Physiol. 27, 240–250 (1952).PubMedCrossRefGoogle Scholar
  937. Ziegenbein, E.: Untersuchungen über den Stoffwechsel und die Atmung keimender Kartoffelknollen sowie anderer Pflanzen. Jb. wiss. Bot. 25, 563–606 (1893).Google Scholar
  938. Ziegler, H.: Die Beeinflussung der Atmungsintensität pflanzlicher Gewebe durch eine Belichtung in fluoreszierenden Farbstofflösungen. Z. Natur-forsch. 5b, 345–350 (1950).Google Scholar
  939. Ziegler, H., u. I. Ziegler-Günder: Über die Photolabilität der Amphibienpterine und die Wirkung dieser Stoffe auf die Sauerstoffaufnahme atmender Gewebe. Z. Naturforsch. 10b, 642–648 (1955).Google Scholar
  940. Aldous, J. G., and D. K. R. Steward: The effect of ultraviolet radiation upon enzymatic activity and viability of the yeast cells. Canad. J. Med. Sci. 30, 561–570 (1952).Google Scholar
  941. Allen, A. O., C. J. Hochanadel, I. A. Ghormley and T. W. Davis: The effect of ultraviolet radiation on the infectivity and metabolism of Rickettsia. J. Physic. Chem. 56, 575–583 (1952).CrossRefGoogle Scholar
  942. Arnold, W.: The effect of ultraviolet light on photosynthesis. J. Gen. Physiol. 17, 135–143 (1933).PubMedCrossRefGoogle Scholar
  943. Bair, W. J., and J. N. Standard: Rôle of electrolytes and starvation in altering apparent radiosensitivity of bakers yeast. J. Gen. Physiol. 38, 493–504 (1955a).PubMedCrossRefGoogle Scholar
  944. Bair, W. J., and J. N. Standard: Effect of starving and Dowex-50 treatment on growth of normal and X-irradiated yeast. J. Gen. Physiol. 38, 505–513 (1955b).PubMedCrossRefGoogle Scholar
  945. Bair, W. J., J. N. Standard and A. K. Bruce: Relationship between electrolytes and radiation effects on cell metabolism. Proc. of the intern. Conf. on the peaceful uses of atomic energy, Geneva 1955, Bd. 11, S. 292–295. New York: United Nations 1956.Google Scholar
  946. Barron, E. S. G., and S. Dickman: Studies on the mechanism of action of ionizing radiations. II. Inhibition of sulfhydryl enzymes by α-, β- and γ-rays. J. Gen. Physiol. 32, 595–605 (1949).PubMedCrossRefGoogle Scholar
  947. Barron, E. S. G., S. Dickman, J. A. Muntz and T. P. Singer: Studies on the mechanism of action of ionizing radiations. I. Inhibition of enzymes by X-rays. J. Gen. Physiol. 32, 537–552 (1949).PubMedCrossRefGoogle Scholar
  948. Barron, E. S. G., and V. Flood: Studies on the mechanism of action of ionizing radiations. IX. The effect of X-irradiations on cytochrom c. Arch, of Biochem. a. Biophysics 41, 203–211 (1952).Google Scholar
  949. Barron, E. S. G., and B. Gasvoda: The effect of X-rays on the metabolism of Corynebacterium creatinovorans. USAEC Report, ANL-4291, S. 146–158, 1949.Google Scholar
  950. Barron, E. S. G., and S. L. Seki: Studies on the mechanism of action of ionizing radiations. VII. Cellular respiration, cell division and ionizing radiations. J. Gen. Physiol. 35, 865–871 (1952).PubMedCrossRefGoogle Scholar
  951. Bersa, E.: Strahlenbiologische Untersuchungen. II. Über den Einfluß der Röntgenstrahlen auf die Atmung der Wurzelspitzen von Vicia faba. Sitzgsber. Akad. Wiss. Wien, Kl. I 136, 403–419 (1927).Google Scholar
  952. Billen, D., and H. C. Lichstein: The effect of X-irradiation on the adaptative formation of formic hydrogenlyase in E. coli. J. Bacter. 63, 533–536 (1952).Google Scholar
  953. Billen, D., G. E. Stapleton and A. Hollaender: The effect of X-irradiation on the respiration of E. coli. J. Bacter. 65, 131–135 (1953).Google Scholar
  954. Bodine, J. H., and T. C. Evans: Respiration and development of individual mud-dauber wasp larvae following X-irradiation. Physiologic. Zool. 7, 550–555 (1934).Google Scholar
  955. Boell, E. J.: The effects of radiations on respiratory metabolism. J. Cellul. a. Comp. Physiol. 39, Suppl. 2, 19–42 (1952).CrossRefGoogle Scholar
  956. Brandt, C. L., P. J. Freeman and P. A. Swenson: The effect of radiations on galactozymase formation in yeast. Science (Lancaster, Pa.) 113, 383 (1951).Google Scholar
  957. Chesley, L. C.: The effect of radiation upon cell respiration. Biol. Bull. 67, 259–272 (1934).CrossRefGoogle Scholar
  958. Eichel, H. J., and J. S. Roth: The effect of X-irradiation on nuclease activity and respiration of Tetrahymena gdeii W. Biol. Bull. 104, 351–359 (1953).CrossRefGoogle Scholar
  959. Fardon, J. C., M. J. Caroll and M. V. Ruddy: The stimulation of yeast respiration by radiations. Stud. Inst. Div. Thomae 1, 17–39 (1937).Google Scholar
  960. Giese, A. C.: Effects of ultraviolet radiations on luminescence and respiration of Achromobacter fischeri. J. Cellul. a. Comp. Physiol. 17, 203–212 (1941).CrossRefGoogle Scholar
  961. Giese, A. C.: Stimulation of yeast respiration by ultraviolet radiations. J. Cellul. a. Comp. Physiol. 20, 35–46 (1942).CrossRefGoogle Scholar
  962. Giese, A. C., and W. H. Swanson: Studies on the respiration of yeast after irradiation with UV-light. J. Cellul. a. Comp. Physiol. 30, 285–293 (1947).CrossRef