Advertisement

Phototropism of lower plants

  • G. H. Banbury
Chapter
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 17/1)

Abstract

Some of the early observations of phototropism in lower plants are reviewed in the classical text books of plant physiology by Sachs (1887), Pfeffer (1903), Jost (1907) and Vines (1886). The history of the development of ideas on this subject has been traced by Weevers (1949) and Stiles (1950), and some aspects have been critically discussed by Du Buy and Nuernbergk (1932, 1933, 1935). Phototropism in the algae was discussed by Blinks (1951), in the Bryophytes by Garjeanne (1932), in the Pteridophytes by Du Buy and Nuernbergk (1938), and in various fungi by Buller (1934). Other references are mentioned in general reviews of the topic of phototropism and will be separately cited in the course of this discussion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Albaum, H. G.: Inhibitions due to growth hormones in fern prothallia and sporophytes. Amer. J. Bot. 25, 124–133 (1938).Google Scholar
  2. Allsop, A.: Morphogenetic effects of 3-indolylacetonitrile on sporelings of Marsilea in aseptic culture. J. exp. Bot. 7, 1–14 (1956).Google Scholar
  3. Backus, M. P.: Phototropic response of perithecial necks in Neurospora. Mycologia 29, 383–386 (1937).Google Scholar
  4. Banbury, G. H.: Physiological studies in the Mucorales. J. exp. Bot. 3, 77–94 (1952).Google Scholar
  5. Bennet-Clark, T. A.: Salt accumulation and mode of action of auxin. In: The Chemistry and Mode of Action of Plant Growth Substances. Edited R. L. Wain and F. Wightman. London: Butterworth Sci. Publ. 1956.Google Scholar
  6. Benson-Evans, K.: The effect of 2, 4-dichlorophenoxyacetic acid on the female heads of Conocephalum conicum. Trans. brit. bryol. Soc. 2, 289–290 (1955a).Google Scholar
  7. Benson-Evans, K.: Some notes on spore germination in Mnium hornum Hedw. Trans, brit. bryol. Soc. 2, 291 (1955b).Google Scholar
  8. Bernhard, O.: Die phototropische Reaktion von Avena und Phycomyces bei geringsten Beleuchtungsstärken. Diss. Breslau 1940.Google Scholar
  9. Berthold, G.: Beiträge zur Morphologie und Physiologie der Meeresalgen. Jb. wiss. Bot. 13, 567–717 (1882).Google Scholar
  10. Beth, K.: Beziehungen zwischen Wachstum und Formbildung in Abhängigkeit von Licht und Temperatur bei Acetabularia. Z. Naturforsch. 10b, 267–276 (1955a).Google Scholar
  11. Beth, K.: Unterschiedliche Beeinflussung von Wachstum und Teilung durch Veränderung von Licht und Temperatur. Z. Naturforsch. 10b, 276–281 (1955b).Google Scholar
  12. Bischoff, H.: Untersuchungen über den Geotropismus der Rhizoiden. Beih. bot. Zbl. 28 (I), 94–133 (1912).Google Scholar
  13. Blaauw, A. H.: Die Perzeption des Lichtes. Rec. Trav. bot. néerl. 5, 209–372 (1909).Google Scholar
  14. Blaauw, A. H.: Licht und Wachstum. I. Z. Bot. 6, 641–703 (1914).Google Scholar
  15. Blaauw, A. H.: III. Meded. Landbouwhoogeschool Wageningen 15, 91–203 (1918).Google Scholar
  16. Blaauw, A. H., and W. van Heyningen: The radium growth response of one cell. Proc. Acad. Sci. Amst. 28, 403–417 (1925).Google Scholar
  17. Blinks, L. R.: Physiology and biochemistry of algae, chapt. 14. In: Manual of Phycology. Edit. G. M. Smith. Waltham: Chronica Botanica Co. 1951.Google Scholar
  18. Bonner, J. T., K. K. Kane and R. H. Levey: Studies on the mechanics of growth in the common mushroom, Agaricus campestris. Mycologia (N. Y.) 48, 13–19 (1956).Google Scholar
  19. Bopp, M.: Die Wirkung von Heteroauxin auf Protonemawachstum und Knospenbildung von Funaria hygrometrica. Z. Bot. 41, 1 (1953).Google Scholar
  20. Bopp, M.: Die Wirkung von Maleinhydrazid und Kalyptraextrakt auf die Verdickung von Laubmoossporogonen. Naturwissenschaften 41, 234–235 (1954).Google Scholar
  21. Brannon, M. A., and A. F. Bartsch: Influence of growth substances on growth and cell division in green algae. Amer. J. Bot. 26, 271–279 (1939).Google Scholar
  22. Brauner, L.: Tropisms and nastic movements. Ann. Rev. Plant Physiol. 5, 163–182 (1954).Google Scholar
  23. Brian, P. W.: The effects of some microbial metabolic products on plant growth, p. 166–182. In: The Biological Action of Growth Substances. Edit. H.K. Porter. Cambridge: University Press 1957.Google Scholar
  24. Briggs, W. R., T. A. Steeves, I. M. Sussex and R. H. Wetmore: A comparison of auxin destruction by tissue extracts and intact tissues of the fern Osmunda cinnamomea L. Plant Physiol. 30, 148–155 (1955).PubMedCentralPubMedGoogle Scholar
  25. Brumfield, R. T.: Curvatures in Timothy roots induced by ultraviolet radiation. Amer. J. Bot. 40, 615–617 (1953).Google Scholar
  26. Buch, H.: Über den Photo-und Hydrotropismus der Lebermoospflanzen. Oversikt av. Finska Vetenskaps Soc. Förhandl. 64, 1–79 (1922).Google Scholar
  27. Buder, J.: Die Inversion des Phototropismus bei Phycomyces. Ber. dtsch. bot. Ges. 36, 104–105 (1918).Google Scholar
  28. Buder, J.: Neue phototropische Fundamental versuche. Ber. dtsch. bot. Ges. 38, 10–14 (1920).Google Scholar
  29. Buder, J.: Über die phototropische Empfindlichkeit von Phycomyces für verschiedene Spektralgebiete. Beitr. Biol. Pflanz. 19, 420–430 (1932).Google Scholar
  30. Buder, J.: Übersicht über Ergebnisse einiger noch ungedruckter Arbeiten aus den Botanischen Anstalten der Universität Breslau (mimeographed private communication) 1946.Google Scholar
  31. Bünning, E.: Phototropismus und Carotinoide. I. Phototropische Wirksamkeit von Strahlen verschiedener Wellenlänge und Strahlungsabsorption im Pigment bei Pilobolus. Planta (Berl.) 26, 712–736 (1936).Google Scholar
  32. Bünning, E.: II. Das Carotin der Reizaufnahmezonen von Pilobolus, Phycomyces und Avena. Planta (Berl.) 27, 148–158 (1937a).Google Scholar
  33. Bünning, E.: III. Weitere Untersuchungen an Pilzen und höheren Pflanzen. Planta (Berl.) 27, 583–610 (1937b).Google Scholar
  34. Bünning, E.: Entwicklungs-und Bewegungsphysiologie der Pflanzen. Berlin: Springer 1953).Google Scholar
  35. Bünning, E.: Bewegungen. Fortschr. Bot. 18, 347 (1956).Google Scholar
  36. Bünning, E., I. Dorn, G. Schneiderhöhn u. I. Thorning: Zur Funktion von Lactoflavin und Carotin beim Phototropismus und bei lichtbedingten Wachstumsbeeinflussungen. Ber. dtsch. bot. Ges. 66, 333–340 (1953).Google Scholar
  37. Buller, A. H. R.: Researches on Fungi, vol.6. London: Longmans, Green & Co. 1934.Google Scholar
  38. Burrows, E. M.: Growth control in the Fucaceae. In: Second International Seaweed Symposium. Edit. T. Braarud and N. A. Sørensen. London and New York: Pergamon Press 1956.Google Scholar
  39. Cantino, E. C., J. Lovett and E. A. Horenstein: Chitin synthesis and nitrogen metabolism during differentiation in Blastocladiella emersonii. Amer. J. Bot. 44, 498–505 (1957).Google Scholar
  40. Carlile, M. J.: Phototropism of Phycomyces sporangiophores. Nature (Lond.) 180, 202 (1957).Google Scholar
  41. Castle, E. S.: Dark adaptation and the light growth response of Phycomyces. J. gen. Physiol. 12, 391–400 (1929).PubMedCentralPubMedGoogle Scholar
  42. Castle, E. S.: The light-sensitive system as the basis of the photic responses of Phycomyces. Proc. nat. Acad. Sci. (Wash.) 16, 1–6 (1930a).Google Scholar
  43. Castle, E. S.: Phototropism and the light-sensitive system of Phycomyces. J. gen. Physiol. 13, 421–435 (1930b).PubMedCentralPubMedGoogle Scholar
  44. Castle, E. S.: The phototropic sensitivity of Phycomyces as related to wavelength. J. gen. Physiol. 14, 701–711 (1931a).PubMedCentralPubMedGoogle Scholar
  45. Castle, E. S.: Phototropic “indifference” and the light-sensitive system of Phycomyces. Bot. Gaz. 91, 206–212 (1931b).Google Scholar
  46. Castle, E. S.: Dark adaptation and the dark growth response of Phycomyces. J. gen. Physiol. 16, 75–88 (1932a).PubMedCentralPubMedGoogle Scholar
  47. Castle, E. S.: On “reversal” of phototropism in Phycomyces. J. gen. Physiol. 15, 487–489 (1932b).PubMedCentralPubMedGoogle Scholar
  48. Castle, E. S.: The refractive indices of whole cells. The physical basis of the positive phototropism of Phycomyces. J. gen. Physiol. 17, 41–62 (1933).PubMedCentralPubMedGoogle Scholar
  49. Castle, E. S.: Photic excitation and phototropism in single plant cells. Cold Spr. Harb. Symp. quant. Biol. 3, 224–229 (1935).Google Scholar
  50. Castle, E. S.: Spiral growth and reversal of spiraling in Phycomyces and their bearing on primary wall structure. Amer. J. Bot. 29, 664–672 (1942).Google Scholar
  51. Castle, E. S.: Problems of oriented growth and structure in Phycomyces. Quart. Rev. Biol. 28, 364–372 (1953).PubMedGoogle Scholar
  52. Castle, E. S., and A. J. M. Honeyman: The light-growth response and the growth system of Phycomyces. J. gen. Physiol. 18, 385–397 (1933).Google Scholar
  53. Chakrabarty, M.: Production of fruitbodies of Agaricus polyporus Berk, in artificial culture. Curr. Sci. 10, 26–28 (1941).Google Scholar
  54. Cherewick, W. J.: Studies in the biology of Erysiphe graminis DC. Canad. J. Res., C 22, 52–86 (1944).Google Scholar
  55. Cochran, V. W.: The effect of artificial light on the germination of urediospores of Phragmidium mucronatum (Fr.) Schlecht. Phytopathology 35, 458–461 (1945).Google Scholar
  56. Curry, G. M., and H. E. Gruen: Negative phototropism of Phycomyces in the ultra-violet. Nature (Lond.) 179, 1028–1029 (1957)Google Scholar
  57. Darsie, M. L.: Certain aspects of phototropism, growth and polarity in the single celled marine algae, Bryopsis. Thesis, Stanley University 1939. Cit. by L. R. Blinks in chapt. 14, Manual of Phycology, edit. G. M. Smith. Waltham: Chronica Botanica Co. 1951.Google Scholar
  58. Dassek, M.: Der Phototropismus der Lebermoosrhizoide. Beitr. Biol. Pflanz. 26, 125–200 (1939).Google Scholar
  59. Davidson, F.F.: The effects of auxins on the growth of marine algae. Amer. J. Bot. 37, 502–510 (1950).Google Scholar
  60. Delbrück, M., and W. Reichardt: System analysis for the light growth reaction of Phycomyces. In: Cellular mechanisms in differentiation and growth. Edit. Dorothea Runich. Princeton: University Press 1956.Google Scholar
  61. De Zeeuw, D., and A. C. Leopold: The prevention of auxin responses by ultra-violet light. Amer. J. Bot. 44, 225–228 (1957).Google Scholar
  62. Douin, R.: Sur la sensibilité photo-géotropique du sporogone des hépatiques. C. R. Acad. Sci. (Paris) 206, 764–766 (1938).Google Scholar
  63. Douin, R.: Sur les réactions phototropiques et géotropiques des appareils reproducteur des hépatiques. Rev. gén. Bot. 60, 321–337 (1953).Google Scholar
  64. Du Buy, H. G., and E. Nuernbergk: Phototropismus und Wachstum der Pflanzen. Ergebn. Biol. 9 (1932); 10 (1934); 12 (1935).Google Scholar
  65. Du Buy, H. G., and E. Nuernbergk: Growth, tropisms and other movements, chapt. 10, p. 303–346. In: Manual of Pteridology, edit. by Fr. Verdoorn. The Hague: Martinus Nijhoff 1938.Google Scholar
  66. Du Buy, H. G., and R. A. Olson: The presence of growth regulators during the early development of Fucus. Amer. J. Bot. 24, 609–611 (1937).Google Scholar
  67. Errera, L.: Die große Wachstumsperiode bei den Fruchtträgern von Phycomyces. Bot. Ztg 52, 496–503 (1884).Google Scholar
  68. Farmer, J. B.: Contributions to our knowledge of the Fucaceae: their life history and cytology. Phil. Trans. B 190, 623–645 (1898).Google Scholar
  69. Farmer, J. B., and J. L. Williams: On fertilization, and the segmentation of the spore, in Fucus. Proc. roy. Soc. B 60, 188–195 (1896).Google Scholar
  70. Feldmann, J.: Sur le phototropisme du Derbesia Lamourouxii. Rev. Algol. 9, 145–147 (1936).Google Scholar
  71. Forbes, I. L.: Factors affecting the development of Puccinia coronata in Louisiana. Phytopathology 29, 659–684 (1939).Google Scholar
  72. Forssberg, A. G.: Studien über einige biologische Wirkungen der Röntgen-und γ-Strahlen, insbesondere an Phycomyces Blakesleeanus. Acta radiol. (Stockh.) Suppl. 49, 1–143 (1943).Google Scholar
  73. Fromme, F. D.: Negative heliotropism of the urediniospore germ-tubes of Puccinia rhamni. Amer. J. Bot. 2, 82–85 (1915).Google Scholar
  74. Galston, A. W.: Phototropism. II. Bot. Review 16, 361–378 (1950).Google Scholar
  75. Gardner, E. B.: Conidiophore elongation in Aspergillus gigantzus. Trans. N. Y. Acad. Sci. 17, 476–490 (1955).PubMedGoogle Scholar
  76. Garjeanne, A. J. M.: Physiology, chapt. 8, p. 227–232. In: Manual of Bryology, edit, by F. R. Verdoorn. The Hague: Martinus Nijhoff 1932.Google Scholar
  77. Gentile, A. C., and R. M. Klein: The apparent necessity of indoleacetic acid for the growth of Diplodia. Physiol. Plantarum (Cph.) 8, 291–299 (1955).Google Scholar
  78. Goebel, K.: Über die Einwirkung des Lichtes auf die Flächenentwicklung der Farnprothallien. Rec. Trav. bot. néerl. A 25, 122–128 (1928).Google Scholar
  79. Gettkandt, G.: Zur Kenntnis des Phototropismus der Keimmyzelien einiger parasitischer Pilze. Wiss. Z. Univ. Halle, math.-nat. Kl. 3, 691–710 (1954).Google Scholar
  80. Glaser, L., and D. H. Brown: The enzymic synthesis of chitin by extracts of Neurospora crassa. Biochim. biophys. Acta 23, 449–450 (1957).PubMedGoogle Scholar
  81. Glasziou, K. T.: The effect of 3-indolylacetic acid on the binding of pectin methylesterase to the cell walls of tobacco pith. Aust. J. biol. Sci. 10, 337–341 (1957).Google Scholar
  82. Goodman, J. J., and R. R. Ferrera: Synthesis of riboflavin by Ashbya gossypii grown in a synthetic medium. Mycologia (N. Y.) 46, 556–563 (1954).Google Scholar
  83. Goodwin, T. W.: Fungal carotenoids. Bot. Review 18, 291–316 (1952).Google Scholar
  84. Haberlandt, G.: Über das Längenwachstum und den Geotropismus der Rhizoiden von Marchantia und Lunularia. Öst. bot. Z. 39, 93–98 (1889).Google Scholar
  85. Halbsguth, W.: Über die Entwicklung der Dorsiventralität bei Marchantia polymorpha L. Ein Wuchsstoffproblem? Biol. Zbl. 72, 52–104 (1953).Google Scholar
  86. Halbsguth, W., u. H. Kohlenbach: Einige Versuche über die Wirkung von Heteroauxin auf die Symmetrieentwicklung der Brutkörperkeimlinge von Marchantia polymorpha L. Planta (Berl.) 42, 349–366 (1953).Google Scholar
  87. Hawker, L. E.: Physiology of Fungi. London: University London Press 1950.Google Scholar
  88. Heitz, E.: Die keimende Funaria-Spore als physiologisches Versuchsobjekt. Ber. dtsch. bot. Ges. 60, 17–27 (1942).Google Scholar
  89. Heuckel, A.: Le phototropisme des Mucorini. Bull. Inst. Rech. biol. St. Biol. Univ. Perm. 5, 307–310 (1927).Google Scholar
  90. Hum., A.M.: Effect of unilateral monochromatic light and group orientation on the polarity of germinating Fucus spores. Bot. Gaz. 70, 25–50 (1920).Google Scholar
  91. Hurley-Py, G.: Influence de la lumière sur la culture aseptique des prothalles de Fougères. C. R. Soc. Biol. (Paris) 142, 297–300 (1948).Google Scholar
  92. Ingold, C. T.: Dispersal in Fungi. Oxford: Clarendon Press 1953.Google Scholar
  93. Ingold, C. T., and V. J. Dring: An analysis of spore discharge in Sordaria. Ann. Bot. (Lond.) 21, 465–478 (1957).Google Scholar
  94. Jaffe, L.: Do Fucus eggs interact through a CO2-Ph gradient? Proc. nat. Acad. Sci. (Wash.) 41, 267–270 (1955).Google Scholar
  95. Jaffe, L.: Effect of polarized light on polarity of Fucus. Science 123, 1081–1082 (1956).PubMedGoogle Scholar
  96. Jeffreys, D. B., and V. A. Greulach: The nature of tropisms of Coprinus sterquilinus. J. Elisha Mitchell Sci. Soc. 72, 153–158 (1956).Google Scholar
  97. Johnston, E. S.: Growth movements in relation to radiation, chapt. 33, p. 1073–1091. In: Biological Effects of Radiation, vol. 2, edit. B. M. Duggar. London: McGraw-Hill 1936.Google Scholar
  98. Jolivette, H.D.M.: Studies on the reactions of Pilobolus to light stimuli. Bot. Gaz. 57, 89–121 (1914).Google Scholar
  99. Jost, L.: Lectures on Plant Physiology. Oxford: Clarendon Press 1907. Lecture 36.Google Scholar
  100. Knapp, E.: Entwicklungsphysiologische Untersuchungen an Fucaceen-Eiern. I. Zur Kenntnis der Polarität der Eier von Gytosira barlata. Planta (Berl.) 14, 731–740 (1931).Google Scholar
  101. Kniep, H.: Beiträge zur Keimungs-Physiologie und Biologie von Fucus. Jb. wiss. Bot. 44, 635–642 (1907).Google Scholar
  102. Kögl, F., u. B. Verkaaik: Über das Vorkommen von Auxin in lichtempfindlichen Pilzen. Z. physiol. Chem. 280, 162–166 (1944).Google Scholar
  103. Langeron, M., et R. Vanbreuseghem: Précis de Mycologie. Paris: Masson & Cie. 1952.Google Scholar
  104. Larue, C. D., and S. Narayanaswami: Auxin inhibition in the liverwort Lunularia. New Phytologist 56, 61–70 (1957).Google Scholar
  105. Machlis, L., and E. Ossia: Maturation of the meiosporangia of Euallomyces. II. Preliminary observations on the effect of auxins. Amer. J. Bot. 40, 465–468 (1953).Google Scholar
  106. Manten, A.: Phototaxis, phototropism and photosynthesis in purple bacteria and blue-green algae. Diss. Univ. Utrecht 1948. See Biol. Abstr. 23, Sect. 19654 (1949).Google Scholar
  107. Martin, S. M., and G.A. Adams: A survey of fungal Polysaccharides. Canad. J. Microbiol. 2, 715–721 (1956).Google Scholar
  108. Meyer, S. L.: Fifteen years of research in moss physiology. Huitième Congr. int. de Botanique, Paris. Rapports et communications aux Sect. 14, 15 and 16, p. 125–126, 1954.Google Scholar
  109. Mohr, H.: Die Beeinflussung der Keimung von Farnsporen durch Licht und andere Faktoren. Planta (Berl.) 46, 534–551 (1956a).Google Scholar
  110. Mohr, H.: Die Abhängigkeit des Protonemawachstums und der Protonemapolarität bei Farnen von Licht. Planta (Berl.) 47, 127–158 (1956b).Google Scholar
  111. Mussack, A.: Untersuchungen über Cystopteris fragilis. Beih. bot. Zbl. 51 (I), 204–254 (1933).Google Scholar
  112. Nasr, A. H.: On the phototropism of Acetabularia caliculus. Rev. Algol. 11, 347–350 (1939).Google Scholar
  113. Nienburg, W.: Die Keimungsrichtung von Fucus-Eiern und die Theorie der Lichtperzeption. Ber. dtsch. bot. Ges. 40, 38–40 (1922).Google Scholar
  114. Nêmec, B.: Die Symmetrieverhältnisse und Wachstumsrichtungen einiger Laubmoose. Jb. wiss. Bot. 43, 501–579 (1906).Google Scholar
  115. Oehlkers, F.: Phototropische Untersuchungen an Phycomyces nitens. Z. Bot. 19, 1–44 (1927).Google Scholar
  116. Olson, II. A., and H. G. Du Buy: The role of growth substance in the polarity and morphogenesis of Fucus. Amer. J. Bot. 24, 611–615 (1937).Google Scholar
  117. Oort, A. J. P.: The spiral growth of Phycomyces. Proc. Acad. Sci. Amst. 34, 564–575 (1931).Google Scholar
  118. Oort, A. J. P.: Die Wiederherstellung der Empfindlichkeit nach einem Lichtreiz. Proc. Acad. Sci. Amst. 29, 5–47 (1932).Google Scholar
  119. Ordin, L., R. Cleland and J. Bonner: Influence of auxin on cell-wall metabolism. Proc. nat. Acad. Sci. (Wash.; 41, 1023–1029 (1955).Google Scholar
  120. Orth, R.: Zur Keimungsphysiologie der Farnsporen in verschiedenen Spektralbezirken. Jb. wiss. Bot. 84, 358–426 (1937).Google Scholar
  121. Overbeek, J. van: Auxin in marine algae. Plant Physiol. 15, 291–299 (1940a).PubMedCentralPubMedGoogle Scholar
  122. Overbeek, J. van: Auxin in marine algae. II. Bot. Gaz. 101, 940–947 (1940b).Google Scholar
  123. Page, R. M.: Studies on the development of asexual reproductive structures in Pilobolus. Mycologia (N. Y.) 48, 206–224 (1956).Google Scholar
  124. Parr, R.: The response of Pilobolus to light. Ann. Bot. (Lond.) 32, 177–205 (1918).Google Scholar
  125. Paul, H. L.: Phototropische Untersuchungen an jungen Sporangienträgern von Pilobolus-Arten. Diss. Halle 1950.Google Scholar
  126. Peirce, G. J.: Studies of irritability in plants. Ann. Bot. (Lond.) 20, 449–465 (1906).Google Scholar
  127. Peirce, G. J., and F. A. Randolph: Studies of irritability in algae. Bot. Gaz. 40, 321–350 (1905).Google Scholar
  128. Pfeffer, W.: The Physiology of Plants, chapt. 6, part III, edit. A. J. Ewart. Oxford: Clarendon Press 1903.Google Scholar
  129. Prankerd, T. L.: On the irritability of the fronds of Asplenium bulbiferum with special references to graviperception. Proc. roy. Soc. B 93, 143–152 (1922).Google Scholar
  130. Pringsheim, E. G., u. V. Czurda: Phototropische Reaktion und ballistische Probleme bei Pilobolus. Jb. wiss. Bot. 66, 863–901 (1927).Google Scholar
  131. Reinert, J.: Über die Bedeutung von Carotin und Riboflavin für die Lichtreizaufnahme bei Pflanzen. Naturwissenschaften 39 (2), 47–48 (1952).Google Scholar
  132. Richards, R. R.: Responses of representative fungi to certain growth-regulating substances. Bot. Gaz. 110, 523–550 (1949).Google Scholar
  133. Rosenvinge, M. L. K.: Influence des agents extérieurs sur l’organisation polaire et dorsiventrale des plantes. Rev. gén. Bot. 1, 53–62, 123-135 (1889).Google Scholar
  134. Rousseau, J.: Action de l’acid a-naphtaline-acetique sur les spores de Marchantia polymorpha L. Bull. Soc. bot. France 99, 308–310 (1952).Google Scholar
  135. Rousseau, J.: Action des heteroauxines sur quelques Marchantiales. Huitième Congr. int. de Botanique, Paris. Rapports et communications aux Sect. 14, 15 and 16, p. 126–127, 1954.Google Scholar
  136. Sachs, J. v.: Lectures on the Physiology of Plants. Oxford: Clarendon Press 1887. Lecture 39.Google Scholar
  137. Sarasin, A.: Untersuchungen über die Lactoflavinbildung durch Aspergillus niger van Tieghem. Ber. Schweiz. bot. Ges. 63, 287–316 (1953).Google Scholar
  138. Schneider, R.: Untersuchung über die Lichtreizbarkeit von Pilobolus. Diss. Breslau 1942.Google Scholar
  139. Schneiderhöhn, G.: Das Aktionsspektrum der Wachstumsbeeinflussung durch Licht bei Coprinus lagopus. Arch. Mikrobiol. 21, 230–236 (1954).PubMedGoogle Scholar
  140. Schrank, A. R.: Plant tropisms. Ann. Rev. Plant Physiol. 1, 59–74 (1950).Google Scholar
  141. Seemann, J. G.: Die Wachstumszone der Sporangienträger von Phycomyces und ihre Reaktion auf Kontaktreize. Diss. Breslau 1939.Google Scholar
  142. Sequeira, L., and T. A. Steeves: Auxin inactivation and its relation to leaf drop caused by the fungus Omphalia flavida. Plant Physiol. 29, 11–16 (1954).PubMedCentralPubMedGoogle Scholar
  143. Snell, W. H.: Studies of certain fungi of economic importance in the decay of building timbers. Bull. U. S. Dept. Agric. 1922, 1053.Google Scholar
  144. Stahl, E.: Einfluß der Beleuchtungsrichtung auf die Theilung der Equisetumsporen. Ber. dtsch. bot. Ges. 3, 334–340 (1885).Google Scholar
  145. Stephan, J.: Untersuchungen über die Lichtwirkung bestimmter Spektralbezirke und bekannter Strahlungsintensitäten auf die Keimung und das Wachstum einiger Farne und Moose. Planta (Berl.) 5, 381–443 (1928).Google Scholar
  146. Stiles, W.: An introduction to the principles of plant physiology. London: Methuen & Co. 1950.Google Scholar
  147. Stock, F.: Keimung und Keimschlauchwachstum der Uredosporen einiger Getreideroste. Phytopath. Z. 3, 231–279 (1931).Google Scholar
  148. Thimann, K. V.: On the plant growth hormone produced by Bhizopus suinus. J. biol. Chem. 109, 279–291 (1935).Google Scholar
  149. Tollenaar, D.: Dark-growth responses. Proc. roy. Acad. Sci. Amst. 26, 378–379 (1921).Google Scholar
  150. Tollenaar, D., and A. H. Blaauw: Light and dark adaptation of a plant cell. Proc. roy. Acad. Sci. Amst. 24, 1–16 (1921).Google Scholar
  151. Tonhazy, N., and M. J. Pelczar: Oxidation of indoleacetic acid by an extracellular enzyme from Polypoms versicolor. Science 120, 141 (1954).PubMedGoogle Scholar
  152. Vines, S. H.: Lectures on the Physiology of Plants. Cambridge: University Press 1886. Lecture 17.Google Scholar
  153. Wald, G.: The photoreceptor function of the carotenoids and vitamin A. In R. S. Harris and K. V. Thimann, Vitamins and Hormones, vol. 1, p. 195–227. New York: Academic Press 1943.Google Scholar
  154. Wassink, E. C., and M. A. Bouman: Can phototropism be initiated by a one-quantum-per-cell process? Enzymologia 12, 193–197 (1947).PubMedGoogle Scholar
  155. Waygood, E. R., and G. A. MacLachlan: Biochemical mechanisms in phototropism. Chem. Can. 8, 40–45 (1956a).Google Scholar
  156. Waygood, E. R., and G. A. MacLachlan: The effect of catalase, riboflavin and light on the oxidation of indoleacetic acid. Physiol. Plantarum (Cph.) 9, 607–617 (1956b).Google Scholar
  157. Wyagood, E. R., A. Oaks and G. A. MacLachlan: The enzymically catalyzed oxidation of indoleacetic acid. Canad. J. Bot. 34, 905–926 (1956).Google Scholar
  158. Weston, W. A. R. D.: Effects of light on urediniospores of black stem rust of wheat, Puccinia graminis tritici. Nature (Lond.) 128, 67–68 (1931a).Google Scholar
  159. Weston, W. A. R. D.: The effect of ultra-violet radiation on the urediniospores of some physiologic forms of Puccinia graminis tritici. Sci. Agric. 12, 81–87 (1931b).Google Scholar
  160. Weston, W. A. R. D.: The reaction of disease organisms to certain wave lengths in the visible and invisible spectrum. II. Reaction of uredinio-spores to visible light; wavelengths between 400 and 780 mμ. Phytopath. Z. 4, 229–246 (1932).Google Scholar
  161. Weevers, Th.: Fifty Years of Plant Physiology. Amsterdam: Scheltema & Holkema’s Boekhandel 1949.Google Scholar
  162. Wey, H. G. van der: Über die phototropische Reaktion von Pilobolus. Proc. kon. ned. Akad. Wet. 32, 1–13 (1929).Google Scholar
  163. Whitaker, D. M.: The effect of white light upon the rate of development of the rhizoid protuberance and the first cell division in Fucus furcatus. Biol. Bull. Mar. biol. Labor. Wood’s Hole 70, 100–108 (1936).Google Scholar
  164. Whitaker, D. M.: The effects of ultra-centrifuging and of pH on the development of Fucus eggs. J. cell. comp. Physiol. 15, 173–178 (1940).Google Scholar
  165. Whitaker, D. M.: The effect of unilateral ultra-violet light on the development of the Fucus egg. J. gen. Physiol. 24, 263–278 (1941).PubMedCentralPubMedGoogle Scholar
  166. Whitaker, D.M., and E. W. Lowrance: On the period of susceptibility in the egg of Fucus furcatus when polarity is induced by brief exposure to directed white light. J. cell. comp. Physiol. 7, 417–424 (1936).Google Scholar
  167. Wiechulla, O.: Beiträge zur Kenntnis der Lichtwachstumsreaktionen von Phycornyces. Beitr. Biol. Pflanz. 19, 371–419 (1932).Google Scholar
  168. Wightman, F.: Cit. by Bennet-Clark 1956.Google Scholar
  169. Williams, L. G.: Effects of indoleacetic acid on growth in Codium. Amer. J. Bot. 39, 107–109 (1952).Google Scholar
  170. Winkler, H.: Über den Einfluß äußerer Factoren auf die Theilung der Eier von Cystosira. Ber. dtsch. bot. Ges. 18, 297–305 (1900).Google Scholar
  171. Wolf, F. A., and F. T. Wolf: The Fungi, vol. 2. New York: John Wiley & Sons 1947.Google Scholar
  172. Wortman, J.: Über den Einfluß der strahlenden Wärme auf wachsende Pflanzentheile. Bot. Ztg 41, 457, 473 (1883).Google Scholar
  173. Ziegler, H.: Inversion phototropischer Reaktionen. Planta (Berl.) 38, 474–498 (1950).Google Scholar

Addendum: Papers that have appeared in 1958

  1. Goodwin, T. W.: Carotenoids, Function in Fungi, Vol. X of this Handbook.Google Scholar
  2. Maass, W.: Zur Frage einer Beteiligung von Indolylessigsäure beim Wachstum und beim Phototropismus von Phycomyces. Arch. Mikrobiol. 30, 73–90 (1958).PubMedGoogle Scholar
  3. Reichardt, W., u. D. Varjú: Eine Inversionsphase der phototropischen Reaktion. Z. physik. Chem., N. F. 15, 297–320 (1958).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1959

Authors and Affiliations

  • G. H. Banbury

There are no affiliations available

Personalised recommendations