Advertisement

Quantum dots in magnetic fields: Unrestricted symmetries in the current spin-density functional formalism

  • M. Koskinen
  • J. Kolehmainen
  • S. M. Reimann
  • J. Toivanen
  • M. Manninen
Conference paper

Abstract

We apply the current spin-density functional formalism (CSDFT) of Vignale and Rasch to two-dimensional quantum dots in magnetic fields. Avoiding any spatial symmetry restrictions of the solutions, we find that a broken rotational symmetry of the electronic charge density can occur in high magnetic fields.

PACS

71. Electronic structure 73.20.Dx Electron states in low-dimensional structures 85.30.Vw Low-dimensional quantum devices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.P. Kouwenhoven et al.: Electron transport in quantum dots, in Proceedings of the Advanced Study institute on Mesoscopic Electron Transport, 1997, ed. by L.L. Sohn, L.P. Kouwenhoven, G. SchönGoogle Scholar
  2. 2.
    M.I. Lubin, O. Henionen, M.D. Johnson: Phys. Rev. B 56, 10 373 (1997)Google Scholar
  3. 3.
    O. Heinonen, J.M. Kinaret, M.D. Johnson: rond-Mat/ 97712168]Google Scholar
  4. 4.
    M. Ferconi, M.R. Geller, G. Vignale: Phys. Rev. B 52, 16 357 (1995)Google Scholar
  5. 5.
    S. Tarucha, D.C. Austing, T. Honda, R.J. van der Hage, L.P. Kouwenhoven: Phys. Rev. Lett. 77, 3613 (1996)ADSCrossRefGoogle Scholar
  6. D.G. Austing et al.: Jpn. J. Appl. Phys. (1998) (in print)Google Scholar
  7. 7.
    M. Koskinen, M. Manninen, S.Ni. Reimann: Phys. Rev. Lett. 79, 1817 (1997)CrossRefGoogle Scholar
  8. 8.
    G. Vignale, M. Rasolt: Phys. Rev. B 37, 10 685 (1988)Google Scholar
  9. 9.
    H.-M. Muller, S.E. Koonin. Phys. Rev. LE 54, 14 532 (1996)Google Scholar
  10. 10.
    B. Tanatar, D.M. Ceperley: Phys. Rev. B 39, 5005 (1989)Google Scholar
  11. 11.
    G. Fano, F. Ortolani: Phys. Rev. B 37, 8179 (1987)ADSCrossRefGoogle Scholar
  12. 12.
    A.H. McDonald, S.R. Eric Yang, M.D. Jonson: Aust. J. Phys. 46, 345 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    C. de C. Chamon, X.G. Wen: Phys. Rev. 49, 8227 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    S.M. Reimann, M. Koskinen, M. Manninen, B.R. Mattel-son: [cond-mat/9904067]Google Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • M. Koskinen
    • 1
  • J. Kolehmainen
    • 1
  • S. M. Reimann
    • 1
  • J. Toivanen
    • 2
  • M. Manninen
  1. 1.Department of PhysicsUniversity of JyväskyläJyväskyläFinland
  2. 2.Department of MathematicsUniversity of JyväskyläJyväskyläFinland

Personalised recommendations