Advertisement

The electronic structure and magnetic properties of the nickel tetramer and its partially carbonylated forms

  • M. Bienati
  • V. Bonačić-Koutecký
  • P. Fantucci
Conference paper

Abstract

Density functional calculations using nonlocal functionals for exchange and correlation have been carried out on Ni4 and Ni4(CO) x (x = 1, 2) species. In the case of the nonligated cluster, all the forms origMated by Jahn-Teller distortion of the tetrahedron have been investigated. The lowest-energy states are all characterized by a spin multiplicity corresponding to the total spin S = 2; the four unpaired electrons are strongly localized in the atomic 3d shells. The Ni-Ni bond is dominated by the s-s interaction, as is proved by changes in electron distribution caused by the ionization. The interaction of the nickel tetramer with one CO ligand has no substantial effect on magnetic properties. On the contrary, two CO groups are already sufficient, when coordinated in a μ 2 mode, to quench completely the magnetism of the cluster. The μ 2 coordination is found to be more effective in reducing the paramagnetism than the μ 3 coordination.

PACS

31.15.Ew Density-functional theory 31.25.Qin Electron-correlation calculation for polyatomic molecules 36.40.Cg Electronic and magnetic properties of clusters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Fraga, J. Kacwosky, K.M.S. Saxena: Handbook of Atomic Data ( Elsevier, Amsterdam 1975 )Google Scholar
  2. 2.
    F.A. Reuse, S.N. Karma: Chem. Phys. Lett. 234, 77 (1995)ADSCrossRefGoogle Scholar
  3. R. Founder, D.R. Salahub; Surf. Sci. 245, 263 (1991)ADSCrossRefGoogle Scholar
  4. G.L. Estiu, M.C, Zerner: J. Phys. Chem. 100, 16 874 (1996);Google Scholar
  5. G. Pacchioni, N. Rösch: J. Chem. Phys. 104, 7329 (1996);ADSCrossRefGoogle Scholar
  6. G. Pacchioni, N. Rösch: Acc, Chem. Res. 28, 390 (1995)CrossRefGoogle Scholar
  7. H. Basch, M.D. Newton, J.W. Moskowitz: J. Chem. Phys. 3, 9 (1980)Google Scholar
  8. P. Nilynarski, D. Salahub: J. Chem. Phys. 95, 8 (1991)CrossRefGoogle Scholar
  9. C.W. Bauschlischer, P. Siegbahn, L.G.M. Petterson: Theor. Chem. Acta 74, 479 (1988)CrossRefGoogle Scholar
  10. 3.
    A.D. Becke; Phys. Rev. A 38, 3098 (1988)ADSCrossRefGoogle Scholar
  11. 4.
    C. Lee, W. Yang, R. Parr: Phys. Rev. B 37, 78: 5 (1988)Google Scholar
  12. 5.
    P.J. Hay, W.R. Wadt: J. Chem. Phys. 82, 270 (1985)ADSCrossRefGoogle Scholar
  13. 6.
    W.J. Stevens, H. Basch, M. Krauss: J. Chem. Phys 81, 6026 (1984)ADSCrossRefGoogle Scholar
  14. 7.
    C.E. Moore: Atomic energy levels NSRDS-NBS, Circular No. 467 ( US GPO, Washington 1952 )Google Scholar
  15. 8.
    M. Bienati, V. Bonaie-Koutec, P. Fantucci: to be publishedGoogle Scholar
  16. 9.
    F.A. Cotton, A.G. Wilkinson, P.L. Gans: Basic Inorganic Chemistry, 3rd ecln. (John Wiley Sc. Sons, Inc., New York 1994 )Google Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • M. Bienati
    • 1
  • V. Bonačić-Koutecký
    • 1
  • P. Fantucci
    • 1
    • 2
  1. 1.Walther-Nernst-Institut für Physikalische und Theoretische ChemieHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Istituto di Biotecnologie e BioscienzeUniversità di Milano BicoccaMilanoItaly

Personalised recommendations