Surface effects in order—disorder transformations in molecular clusters

  • A. Proykova
  • R. St. Berry
Conference paper


The effect of a surface on structural phase transitions in clusters is examined by means of velocity autocorrelation functions for TeF6 clusters. Isothermal molecular dynamics via quaternion-based equations of motion reveals two successive phase transitions in this plastic substance. The lower-temperature transition is continuous, associated with rotational ordering. The other transition involves translation—rotation coupling in which the growth of correlations causes a crossover from a displacive to an order—disorder regime. Both the linear and angular autocorrelation functions show negative regions at low temperatures. The negative portion of the linear velocity autocorrelation function arises from the system’s memory in the rebound of a molecule against its shell of neighbors. The negative part of the angular velocity autocorrelation function is ascribed to librations of the molecules in their close-packed cages. At still lower temperatures, the negative part exhibits two minima, which are best resolved when linear velocity autocorrelation functions are plotted separately for the surface and the volume molecules. This indicates different memories for surface and volume molecules.


36.40.Ei Phase transitions in clusters 64.70.Kb Solid-solid transitions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Proy-kova, R.S. Berry: Z. Phys. D 40, 215 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    A. Proykova, R. Radev, Feng-Yin Li, R.S. Berry: J. Chem. ‘Phys. 110 (8), 3887 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    R.A. Radev, A. Proykova, Feng-Yin Li, R.S. Berry: J. Chem. Phys. 109 (9), 3596 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    D. Frenkel, B. Mulder: Mol. Phys. 55, 1171 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    C.G. Windsor, D.H. Saunderson, J.N. Sherwood, D. Taylor, G.S. Pawley: J. Phys. C 11, 1741 (1978)ADSCrossRefGoogle Scholar
  6. 6.
    G. Dolling, B.M. Powell, V.F. Sears: Mol, Phys. 37, 1859 (1979)ADSCrossRefGoogle Scholar
  7. 7.
    L.S. Bartell, L. Harsami, E.J. Valente: NATO AS1 Ser, B 158, 37 (1987)Google Scholar
  8. 8.
    M.T. Dove, B,M. Powell, G.S. Pawley, L.S. Bartell: Mol, Phys. 65, 353 (1988)Google Scholar
  9. 9.
    F.M. Beniere, A.H. Fuchs, M.F. de Feraudy, G. Torchet: Mol. Phys. 76, 1071 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    F.M. Beniere, A. Boutain, J.M. Simon, A.H. Fuchs, M.F. de Feraudy, G. Torchet: J. Phys. Chem. 97, 10472 (1993)CrossRefGoogle Scholar
  11. 11.
    L.S. Bartell, F.J. Dulls, B. Chunko: J. Phys. Chem. 95, 6481 (1991)CrossRefGoogle Scholar
  12. 12.
    H. Reiss, P. Mirabel, R.L. Whetten: J. Phys, Chem. 92, 7241 (1988)CrossRefGoogle Scholar
  13. 13.
    A. Boutain, B. Rousseau, A.H. Fuchs: Chem, Phys. Lett. 218, 122 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    Feng-Yin Li, R.S. Berry, A. Proykova: in Book of Abstracts of MWTCC, May 12–16, Evanston, USA, ed. by M, Rat-mer (1995), p. 33Google Scholar
  15. 15.
    J. Farges, M.F. de Feraudy, B. Raoult, G.J. Torchet: J. Chem. Phys, 78, 5067 (1983)ADSCrossRefGoogle Scholar
  16. 16.
    J. Farges, M.F. de Feraudy, B. Raoult, G.J. Torchet: J. Chem. Phys. 84, 3491 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    R.M. Lynden-Bell, K.H. Michel: Rev. Mod. Phys. 66, 721 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    S. Nose’: Progr. Theor. Phys. Suppl. 103, 1 (1991)ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    W. Press, B. Flannery, S. Teuko]sky, W. Vetterling: Numerical Recipes: The Art of Scientific Computing (Cambridge University Press 1989 )Google Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • A. Proykova
    • 1
    • 2
  • R. St. Berry
    • 3
  1. 1.Faculty of PhysicsUniversity of SofiaSofiaBulgaria
  2. 2.Institute for Nuclear TheoryUniversity of WashingtonSeattleUSA
  3. 3.Department of ChemistryThe University of ChicagoChicagoUSA

Personalised recommendations