Melting of clusters approaching 0D

  • R. Kofman
  • P. Cheyssac
  • Y. Lereah
  • A. Stella
Conference paper


Recently, new experiments have allowed us to understand the melting scenario of very small crystals. Down to sizes of 5–8 nm, surface melting amplified by curvature effects is observed; the melting process is initially continuous and reversible (first-order transition with critical phenomena due to confinement), When the inner solid core reaches a critical radius r m, final melting occurs discontinuously and irreversibly. For clusters of sizes smaller than 5–8 nm, surface melting disappears and the inciting process is discontinuous.

Experiments yielding new information will be discussed for the different size ranges of the clusters and compared with models of melting taking surface melting into account. Issues requiring clarification will be stressed, particularly the problem of the limit (if any) of the lowering of the melting temperature.


61.46.+w Clusters, nanoparticles, and nanocrystalline materials 64.70.Dv Solid—liquid transitions 61.16.Bg Transmission, reflection, and scanning electron microscopy (including EBIC) 78.66.Vs Microparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.A. Lindemann: Phys, Z. 11, 609 (1910)zbMATHGoogle Scholar
  2. 2.
    J.J. Thomson: Application of dynamics to Physics and Chemistry ( Macmillan, London 1888 )Google Scholar
  3. 3.
    M. Takagi: J. Phys. Soc. Jpn. 9, 359 (1954)ADSCrossRefGoogle Scholar
  4. 4.
    P. Buffat, J.P. Betel: Phys. Rev. A 13 2287 (1976) and references thereinGoogle Scholar
  5. 5.
    P. Pawlow: Z. Phys. Chem. 65, 545 (1909)Google Scholar
  6. 6.
    K.J. Hauszen: Z. Phys, 157, 523 (1900)ADSCrossRefGoogle Scholar
  7. 7.
    V.K. Semenchenko: in Surface Phenomena -in Metals and Alloys ( Pergamon, New York 1981 )Google Scholar
  8. 8.
    C.R.M. Wronski; Br, J. Appt. Phys. 18, 1731 (1967)Google Scholar
  9. 9.
    E. Sendergard, R. Kofman, P. Cheyssac, F. Célestini, T. Ben David; Y. Lereah: Surf, Sci. 388, L1115 (1997)CrossRefGoogle Scholar
  10. 10.
    R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Dent-scher, T. Ben David, J.M. Pénisson, A. Bourret: Surf. Sci. 303, 231 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    T. Ben David, Y. Lereah, G. Deutscher, R. Kofman, P. Cheyssac: Philos. Mag. A 71, 1135 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    J.W.M. Frenken, P.M. Maree, J.F. van der Veen: Phys. Rev. B 34, 7506 (1986)ADSCrossRefGoogle Scholar
  13. 13.
    T. Ben David, Y. Lereah, G. Deutscher, J.M. Penisson, A. Bourret, R. Kofman, P. Cheyssac: Phys. Rev. Lett, 78, 2585 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    M. Schmidt, R. Kusche, W. Kronmiiller, B. von Issendorff, H. Haberland: Phys. Rev. Lett. 79, 99 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    A. ten Bosch, F. Célestini: Z. Phys. D 28, 293 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    R.R. Vanfleet, J.M. Mochel: Surf, Sci. 341, 40 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    H. Sakai: Surf. Sci. 351, 285 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • R. Kofman
    • 1
  • P. Cheyssac
    • 1
  • Y. Lereah
    • 2
  • A. Stella
    • 3
  1. 1.Laboratoire de Physique de la Matière Condensée — CNRS UMR 6622Université de Nice-Sophia Antipolis, Parc ValroseNice Cedex 2France
  2. 2.Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
  3. 3.Istituto Nazionale per la Fisica della Materia, Dipartimento di Fisica “A. Volta”Universita di PaviaPaviaItaly

Personalised recommendations