Advertisement

A molecular dynamics study on the formation of metallofullerene

  • Y. Yamaguchi
  • S. Maruyama
Conference paper

Abstract

The growth process Of metallofullerene was studied by the use of the molecular dynamics method. Based on density functional theory (DFT) calculations of various forms of small clusters MC n and M n (M = La, Sc, Ni), multi-body classical potential functions for M—C and M—M interactions were constructed with the Morse terni and the Coulomb term as functions of the coordinate number of a metal atom. The clustering process, starting from 500 isolated carbon atoms and 5 metal atoms, was simulated under a controlled temperature condition, T c = 3000 K. When La atoms were applied, the stable open-cap structure surrounding the La atom resulted in the lanthanum-containing caged cluster. For the Sc—C system, the host carbon clusters were not affected as much as they were in the La—C case, because of the weaker Coulomb interaction. The precursor Sc atom was encapsulated in the host cage at the final stage of the growth process. For the Ni—C system, the precursor clusters were similar to those in Scr—C system, although the Ni atom finally stayed on the face of a large ring of the caged structure.

PACS

36.40.-c Atomic and molecular clusters 31.15.Qg Molecular dynamics and other numerical methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.W. Kroto et al.: Nature 318, 162 (1985)ADSGoogle Scholar
  2. 2.
    W. Krätschmer et al.: Nature 347, 354 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    R.E. Haufler et al.: Proc. Mater. Res. Soc. Syrnp. 206, 627 (1991)Google Scholar
  4. 4.
    Y. Chai et al,:.1, Phys. Chem. 95, 7564 (1991)Google Scholar
  5. 5.
    H. Shinohara et al.: J. Phys, Chem. 96, 3571 (1992)Google Scholar
  6. 6.
    K. Kikuchi et al.: Chem. Phys. Lett. 216, 23 (1993)Google Scholar
  7. 7.
    M. Takata et al,: Nature 377, 46 (1995)ADSGoogle Scholar
  8. 8.
    K. Kikuchi et al.: Chem. Phys. Lett. 188, 177 (1992)Google Scholar
  9. 9.
    S. Iijima: Nature 354, 56 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    S. Iijima, T. Ichihara: Nature 363, 603 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    A. Thess et al.: Science 273, 483 (1996)Google Scholar
  12. 12.
    Y. Yamaguchi, S. ililaruyania: Chem. Phys. Lett. 286, 336 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    S. Maruyama, Y. Yamaguchi. Chem. Phys, Lett. 286, 343 (1998)Google Scholar
  14. 14.
    D.W. Brenner: Phys. Rev. B 42, 9458 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    A.D. Becke: J. Chem. Phys, 98, 5648 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    C. Lee, W. Yang, R.G. Parr: Phys, Rev. B 37, 785 (1988)ADSCrossRefGoogle Scholar
  17. 17.
    M.J. Frisch et al.: Gaussian 94 Revision E. 1 ( Gaussian, Inc., Pittsburgh, PA 1995 )Google Scholar
  18. 18.
    E. Curotto et al.: J. Chem. Phys. 108, 729 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    S. Nagase et al.: Chem. Phys. Lett, 201, 475 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    A. Ayuela et al.: Z. Phys. D 41, 69 (1997)Google Scholar
  21. 21.
    D.L. Strout, B.M. Hall: J. Phys. Chem. 100, 18 007 (1996)Google Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • Y. Yamaguchi
    • 1
  • S. Maruyama
    • 1
  1. 1.Department of Mechanical EngineeringThe University of TokyoTokyoJapan

Personalised recommendations