Advertisement

Degeneracy are repulsion between bands of periodic carbon nanotube junctions

  • R. Tamura
  • M. Tsukada
Conference paper

Abstract

The band structures of the periodic nanotube junctions are investigated by the use of effective mass theory (k · p approximation) and the tight binding model. The periodic junctions are constructed by the periodic introduction of defect pairs, consisting of a pentagonal defect and a heptagonal defect, into the carbon nanotube. We treat the periodic junctions whose unit cell is composed by two kinds of metallic nanotubes. The discussed energy region is near the undoped Fermi level where the channel number is kept to 2, so there are two bands. The degeneracy and repulsion between the two bands are determined only from symmetries.

PACS

72.80.Rj Fullerenes and related materials 73.20.Dx Electron states in low dimensional structures (superlattices quantum well structures and multilayers) 72.10.Fk Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Iijima: Nature (London) 354, 56 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    R. Saito et al.: Ploys. Rev. B 46, 1804 (1992); J.W. Mint-mire et al.: Phys. Rev. Lett. 68, 631 (1992); N. Hamada et al.: Phys. Rev. Lett, 68, 1579 (1992)Google Scholar
  3. 3.
    M. Bockrath et al.: Science 275, 1922 (1997); T.W. Ebbe-sen et al.: Nature 382, 54 (1996); A.Yu. Kasumov et al.: Europhys. Lett. 34, 429 (1996); L. Langer et al.: Phys, Rev. Lett. 76, 479 (1996); S.J. Tans et al,: Nature (London) 386. 474 (1997); S. Frank et al.: Science 280, 1774 (1998)Google Scholar
  4. 4.
    S. Iijima, T. Ichihashi, Y. Ando: Nature (London) 356, 776 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    R. Tamura, M. Tsukada: Ploys. Rev. B 55, 4991 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    R. Tamura, M. Tsukada: Z. Phys, D 40, 432 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    R. Saito, G. Dresselhaus, hi-S. Dresselhaus: Ploys. Rev. B 53, 2044 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    L. Chico et al.: Phys. Rev. Lett. 76, 971 (1996); L. Chico et al.: Phys. Rev. B 54, 2600 (1996); T. Nakanishi, T. Ando: J. Phys. Soc. Jpn. 66, 2973 (1997); J.-C. Char-lier, T.W. Ebbesen, Ph. Lambin: Phys. Rev. B 53, 11 108 (1996); M. Merlon, D. Srivastava: Phys. Rev. Lett, 79, 4453 (1997); V. Meunier, L. Henrard, Ph. Lambin: Phys. Rev. B 57, 2586 (1998)Google Scholar
  9. 9.
    Ft. Tamura, M. Tsukada: Phys. Rev. B 49, 7697 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    R. Tamura et al.: Phys. Rev. B 56, 1404 (1997); S. Ihara et al.: Phys. Rev. B 54, 14 713 (1996)Google Scholar
  11. 11.
    K. Akagi et al.: Phys. Rev. B 53, 2114 (1996); K. Akagi et al.: Phys. Rev. Lett. 74, 2307 (1995)Google Scholar
  12. 12.
    S. Amelinckx et at,: Science 265, 635 (1994); X.B. Zhang et al.: Europhys. Lett, 27, 141 (1994); S. Ihara, S. RCA, J. Hitakami: Phys. Rev. B 48, 5643 (1993)Google Scholar
  13. 13.
    R. Tamura, M. Tsukada: Phys. Rev. B 58, 8120 (1998); R. Tamura, M. Tsukada: J. Phys, Soc.,Jpn. 68, 910 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    H. Ajiki, T. Ando: J. Phys. Soc, J.n. 65, 2976 (1996); T. Ando, T. Na.kanishi: J. Phys. Soc. Jpn. 67, 1704 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    H. Matsumura, T. Ando: J. Phys. Soc. Jpn. 67, 3542 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    The bands calculated by the tight binding model are almost degenerate, but slightly split due to higher-order terms of k p in the effective mass equations, which make the equations variant under the operation Q. The invariance under the operation Qi holds within the linear approximation with kGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • R. Tamura
    • 1
  • M. Tsukada
    • 1
  1. 1.Department of Physics, Graduate School of ScienceUniversity of TokyoTokyo 113Japan

Personalised recommendations