Advertisement

Production of fullerenes by high-temperature pulsed arc discharge

  • T. Sugai
  • H. Omote
  • H. Shinohara
Conference paper

Abstract

We have developed a high-temperature pulsed arc discharge apparatus, which can operate in a buffer gas heated up to 1000 °C, and have succeeded in producing fullerenes for the first time with this method. We have quantitatively analyzed the products, using high-performance liquid chromatography (HPLC), to estimate the concentration of fullerenes in soot. The results show that fullerenes are produced not at room temperature but at much higher temperatures such as 1000 °C for Ar. The concentration of fullerenes C70 and higher increases as the pulse width of the discharge increases. In the pulsed arc discharge, the negative electrode is consumed by the sputtering of buffer gas ions.

PACS

81.05.Tp Fullerenes and related materials; diamonds, graphite 36.40.Ei Phase transitions in clusters 82.30.-b Specific chemical reactions; reaction mechanisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley: Nature 318, 162 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    G. von Heiden, M.T. Hsu, P.R. Kemper, M.T. Bowers: J. Chem. Phys. 95, 3835 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    C. von Helden, M.T. Hsu, N. Gotts, M.T. Bowers: J. Phys. Chem. 97, 8182 (1993)CrossRefGoogle Scholar
  4. 4.
    T. Kimura, T. Sugai, H. Shinohara, K. Tohji, 1. Matsuiika: Chem. Phys. Lett. 246, 571 (1995)Google Scholar
  5. 5.
    T. Kimura, T. Sugai, H. Shinohara: Chem, Phys, Lett. 256, 269 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    T. Sugai, H. Shinohara: Chem, Phys. Lett. 264, 327 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    T. Sugai. H. Shinohara: Z. Phys. D. 40, 131 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    T. Sugai, H. Shinohara: Chem. Phys. Lett. 281, 57 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huff man: Nature 347, 354 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    R.E. Haulier, J. Conceicao, L.P.F. Chibante, Y. Chai, N.E. Byrne, S. Flanagan, M.M. Haley, S. C. O’Brien, C. Pan, Z. Xiao, W.E. Billups, M.A. Cidolini, R.H. Hauge, J.L. Margrave: J. Phys. Chem. 94, 8634 (1990)CrossRefGoogle Scholar
  11. 11.
    R.E. Haulier, Y. Chai, L.P.F. Chibante, J. Conceicao, C. Jin, L.S. Wang, S. Maruyama, R.E. Smalley: Mater. Res. Soc. Symp. Proc. 206, 627 (1991)Google Scholar
  12. 12.
    T. Wakabayashi, D. Kasuya, H. Shiromaru, S. Suzuki, K. Kikuchi, Y. Achiba, Z. Phys. D 40, 414 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Saito, M. Inagaki, H. Nagashima, M. Ohkohchi, Y. Ando: Chem. Phys. Lett. 200. 643 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Achiba, T. Wakabayashi, T. Moriwaki, S. Suzuki, H. Shiromaru: Mater. Sci. Eng. B 19, 14 (1993)CrossRefGoogle Scholar
  15. 15.
    G. Ganteför, H.R. Siekmann: Chem, Phys. Lett. 165, 293 (1990)ADSCrossRefGoogle Scholar
  16. 16.
    C.Y. Che, G. Ganteför, W. Eberhardt: Rev. Sci. Instrum. 63, 5661 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    S. Hunsicker, R.O. Jones, G. Ganteför: J. Chem. Phys. 102, 5917 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    Q. Ganteför, S. Hunsicker, R.O. Jones: Chem. Phys. Lett, 236, 43 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    H. Handshuf, G. Ganteför, W. Eberhardt: Rev. Sci, Instrum. 66, 3848 (1995)ADSGoogle Scholar
  20. 20.
    W. Lu, R. Huang, J. Ding, S. Yang: J. Chem. Phys. 104, 6577 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • T. Sugai
    • 1
  • H. Omote
    • 1
  • H. Shinohara
    • 1
  1. 1.Department of ChemistryNagoya UniversityNagoyaJapan

Personalised recommendations