Advertisement

HPLC analysis for fullerenes up to C96 and the use of the laser furnace technique to study fullerene formation process

  • D. Kasuya
  • T. Ishigaki
  • T. Suganuma
  • Y. Ohtsuka
  • S. Suzuki
  • H. Shiromaru
  • Y. Achiba
  • T. Wakabayashi
Conference paper

Abstract

The ambient temperature dependence of the yield of fullerenes was systematically investigated toward furthering the understanding of the fullerene formation mechanism. The change in yield of fullerenes from C60 to C96 was quantitatively examined as a function of fullerene size, temperature, and position of target in the gradient of temperature. As a result, it was found that the formation of higher fullerenes requires higher furnace temperature, presumably because of the presence of higher reaction barriers prior to the accomplishment of the fullerene cage. In connection with such a thermal effect on the yield of fullerenes, we have also carried out an experiment to deduce the spatial distribution of such an endothermic reaction area in which the external heating is effectively active. Furthermore, in order to establish the presence of such a particular area for the fullerene formation, we used a high-speed video camera to directly detect emission from hot particles, which was found to be closely related to fullerene formation.

PACS

36.40.−c Atomic and molecular clusters 81.05.Tp Fullerenes and related materials; diamonds, graphite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Carl, R.E. Smalley: Nature (London) 318, 162 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman: Nature (London) 347, 354 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    R.E. Smalley: Acc. Chem. Res. 25, 98 (1992), and references thereinGoogle Scholar
  4. 4.
    J.R. Heath: ACS Symp. Ser. 481, 1 (1991)CrossRefGoogle Scholar
  5. 5.
    T. Wakabayashi, Y. Achiba: Chem. Phys. Lett. 190, 465 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    T. Wakabayashi, K. Kikuchi, S. Suzuki, H. Shiromaru, Y. Achiba: Z. Phys. D 26, 258 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    T. Wakabayashi, H. Shiromaru, K. Kikuchi, Y. Achiba: Chem. Phys. Lett. 201, 470 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    McElvany, M.M. Ross, N.S. Goroff, F. Diederich: Science 259, 1594 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    J.M. Hunter, J.L. Eye, M.F. Jarrold: J. Chem. Phys. 99, 1785 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    J.M. Hunter, J.L. Eye, M.E. Jarrold: Science 260, 784 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    G. von Helden, N.G. Gotts, M.T. Bowers: Nature (London) 363, 60 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    G. von Heiden, N.G. Gotts, NI.T. Bowers: J. Am. Chem. Soc. 115, 4363 (1993)CrossRefGoogle Scholar
  13. 13.
    R.E. Haufler, Y. Chai, L.P.F. Chinbante, J. Conceicao, C. Jim, L.-S. Wang, S. Maruyama, R.E. Smalley: Mater. Res. Soc. Symp. Proc. 206, 627 (1991)CrossRefGoogle Scholar
  14. 14.
    R.E. Haufler: in Proceedings of the symposium on Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, San Francisco, 1994, ed. by K.M. Kadish, H.S. Ruoff ( The Electrochemical Society, Pennington 1994 ) p. 50Google Scholar
  15. 15.
    T. Wakabayashi, D. Kasuya, H. Shiromaru, S. Suzuki, K. Kikuchi, Y. Achiba: Z. Phys. D 40, 414 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    S. Iijima, T. Wakabayashi, Y. Achiba: J. Phys. Chem. 100, 5839 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • D. Kasuya
    • 1
  • T. Ishigaki
    • 1
  • T. Suganuma
    • 1
  • Y. Ohtsuka
    • 1
  • S. Suzuki
    • 1
  • H. Shiromaru
    • 1
  • Y. Achiba
    • 1
  • T. Wakabayashi
    • 2
  1. 1.Department of Chemistry, Graduate School of ScienceTokyo Metropolitan UniversityHachioji, TokyoJapan
  2. 2.Division of Chemistry, Graduate School of ScienceKyoto UniversityKyotoJapan

Personalised recommendations