Advertisement

The interplay of the electronic and atomic structure on the stability of cationic Li5+pO2+ clusters

  • F. Finocchi
  • C. Noguera
Conference paper

Abstract

Cationic Li5+p O 2 + clusters (0 ≤ p ≤ 5) are studied by the use of ab initio molecular dynamics within the local spin density approximation and compared to neutral Li4+p O 2 + species. The topologies of the most stable Li7O2 and Li10O2 isomers are shown to change upon ionization. An enhanced stability is obtained in the neutral or ionized clusters whenever the number of the lithiums not bounded to oxygen atoms is equal to half the number p of excess electrons. This results in odd—even oscillations both in the Li detachment energies for the cationic species and the adiabatic ionization potentials of the neutral clusters.

PACS

36.40.Wa Charged clusters 71.24.-Fq Electronic structure of clusters and nanoparticles 71.15.Pd Molecular dynamics calculations (Car-Parrinello) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Ebbinghaus, A. Simon: Chem. Phys, 43, 117 (1980)ADSCrossRefGoogle Scholar
  2. 2.
    B. Woratschek, Phys. Rev. Lett. 57, 1484 (1986)CrossRefGoogle Scholar
  3. 3.
    M.G. Burt, V. Heine: J. Phys. C 11, 961 (1978)ADSCrossRefGoogle Scholar
  4. 4.
    F. Finocchi, C. Noguera: Phys. Rev. B 57, 14 646 (1998)Google Scholar
  5. 5.
    T. Bergmann, H. Limberger, T.P. Martin: Phys. Rev. Lett. 60, 1767 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    C. Bréchignac, J. Chem, Phys. 99, 6848 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    R.O. Jones, I. Lichtenstein, J. flutter: J. Chem, Phys. 106, 4566 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    C.H. Wu: Chern. Phys. Lett. 139, 357 (1987)ADSCrossRefGoogle Scholar
  9. 9.
    C. Bréchignac, J. Chem. Phys, 87, 5694 (1987)ADSCrossRefGoogle Scholar
  10. 10.
    I. Boustani, Phys. Rev. B 35, 9437 (1987)Google Scholar
  11. 11.
    C. Bréchignac, Z. Phys. D 42, 303 (1997)Google Scholar
  12. 12.
    R. Car, M. Parrinello: Phys. Rev, Lett. 55, 2471 (1985)ADSCrossRefGoogle Scholar
  13. 13.
    See, e.g., W. Andreoni: Z. Phys. D 19, 31 (1991)CrossRefGoogle Scholar
  14. 14.
    J.P. Perdew, A. Zunger: Phys. Rev. 23, 5048 (1981)ADSCrossRefGoogle Scholar
  15. 15.
    N. Troullier, J.L. Martins: Phys, Rev. B 43, 1993 (1991)Google Scholar
  16. 16.
    F. Finocchi, C. Noguera: Phys. Rev. B 53, 4989 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    F. Finocchi, T. Albaret, C. Noguera: Faraday Discuss. 106, 233 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    The plane wave expansion of the long-range part of the electrostatic energy reads: Les = 470 Eg L’Igg,)i-where,Q is the volume of the unit cell, g is the wave vector, and Ag(g) is the component of the total charge distribution in reciprocal space. The divergent term at g = 0 is replaced with its average over the Brillouin Zone (BZ):Google Scholar
  19. 19.
    V. BoriaCié-KouteckY, P.’Fantucci, J. KouteckY: Chem. Rev. 91, 1035 (1991), and references thereinGoogle Scholar
  20. 20.
    M,A. Lebeault et ai.: Fur. Phys. J. D, this volumeGoogle Scholar
  21. 21.
    M. Manninen, Z. Phys. D 31, 259 (1994)Google Scholar
  22. 22.
    C. Yannouleas, U. Landmann: Phys. Rev. B 51, 1902 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • F. Finocchi
    • 1
  • C. Noguera
    • 1
  1. 1.Laboratoire de Physique des SolidesUniversité Paris SudOrsayFrance

Personalised recommendations